1. INTRODUCTION

Managing today’s computer networks is a complex and error-prone task. These networks consist of a wide variety of devices, from routers and switches, to firewalls, network-address translators, load balancers, and intrusion-detection systems. Network administrators must express policies through tedious box-by-box configuration, while grappling with a multitude of protocols and baroque, vendor-specific interfaces.

In contrast, Software-Defined Networking (SDN) is redefining the way we manage networks. In SDN, a controller application uses a standard, open messaging interface like OpenFlow [1], to specify how network elements or switches should handle incoming packets. Programmers develop their own new controller applications on top of a controller platform which provides a programming API built on top of OpenFlow. Separating the controller platform and applications from the network elements allows anyone—not just the equipment vendors—to program new network control software.

In just a few years, SDN has enabled a wealth of innovation, including prominent commercial successes like Nicira’s network virtualization platform and Google’s wide-area traffic-engineering system. Most of the major switch vendors support the OpenFlow API, and many large information-technology companies are involved in SDN consortia like the Open Networking Foundation and the Open Daylight initiative.

SDN is creating exciting new opportunities for network-savvy software developers and software-savvy network practitioners alike. But how should programmers write these controller applications? The first generation of SDN controller platforms offer programmers a low-level API closely resembling the interface to the switches. This forces programmers to program in “assembly language,” by manipulating bit patterns in packets and carefully managing the shared rule-table space.

In the Frenetic project [2], we are designing simple, reusable, high-level abstractions for programming SDNs, and efficient runtime systems that automatically generate the low-level rules on switches [3, 4, 5, 6, 7]. Our abstractions cover the main facets of managing a network—specifying packet-forwarding policy, monitoring network conditions, and dynamically updating policy to respond to network events. In this article, we describe Pyretic, our Python-based platform that embodies many of these concepts, and enables systems programmers to create sophisticated SDN applications.

Pyretic is open-source software that offers a BSD-style license compatible with the needs of both commercial and research developers. Both the source code for, and a pre-packaged VM containing, Pyretic’s core policy language, libraries, and runtime are available on the Pyretic homepage [8], along with documentation, video tutorials, links to our e-mail discussion list, and more. Feel free to download and run any of the Pyretic examples covered in the article.

2. OPENFLOW

Pyretic is both a response to the shortcomings of OpenFlow as a programmer API, and a client of OpenFlow in its role as an API to network switches. As such, we begin with a brief review of OpenFlow.

OpenFlow switches: An OpenFlow switch has a rule table, where each rule includes:

• a bit pattern (including wildcards) for matching header fields (e.g., MAC and IP addresses, protocol, TCP/UDP port numbers, physical input port, etc.);
• a priority to break ties between overlapping patterns;
• a list of actions (e.g., forward out a port, flood, drop, send to controller, assign a new value to a header field, etc.);
• optional hard and soft timeouts (to evict stale rules);
• byte and packet counters (that collect information about how much traffic is flowing through each rule).

Upon receiving a packet, the switch finds the highest-priority matching rule, applies each action, and updates the counters. Newer versions of OpenFlow support additional header fields and multiple stages of tables.

OpenFlow controllers: The OpenFlow protocol defines how the controller and switches interact. The controller maintains a connection to each switch over which OpenFlow messages are sent. The controller uses these OpenFlow messages to (un)install rules, query the traffic counters, learn the network topology, and receive packets when the switch applies the “send to controller” action. Most existing controller platforms offer programmers an API that is a thin “wrapper” around these operations. Applications are expressed as event handlers that respond to events such as packet arrivals, topology changes, and new traffic statistics.

Controller applications: OpenFlow has enabled a wealth of controller applications, including flexible access control, Web server load balancing, energy-efficient networking, billing, intrusion detection, seamless mobility and virtual-machine migration, and network virtualization. As an example, consider “MAC learning”—an application designed to detect the arrival of new hosts, discover their MAC addresses, and route packets to them. To begin, the application starts by installing a default rule in each edge switch that matches all packets and sends them to the controller. Upon receiving a packet, the application learns the location (i.e., the switch and input port) of the sender. If the receiver’s location is already known, the application installs rules that direct traffic in both directions over a shortest path from one to the other; otherwise, the application instructs the switch to flood—broadcasting the packet to all possible receivers. If a host moves to a new location, the default rule at the new switch sends the next packet to the controller, allowing the application to learn the host’s new location and update the paths that carry traffic to and from the host. Consequently, hosts can continue communicating without disruption, even when one or both hosts move.

3. PYRETIC LANGUAGE

Pyretic encourages programmers to focus on how to specify a network policy at a high-level of abstraction, rather than how to implement it using low-level OpenFlow mechanisms. In particular, instead of implementing a policy by incrementally installing physical rule after physical rule on switch after switch, a Pyretic policy is specified for the entire network at once, via a function from an input located packet (i.e., a packet and its location) to an output set of located packets. The output packets can have modified fields and usually end up at new locations—this is how packet forwarding occurs. The programmer does not need to worry about which OpenFlow rules are used to move packets from place to place.

One of the primary advantages of Pyretic’s policies-as-abstract-functions approach to SDN programming is that it helps support modular programming. In traditional OpenFlow programming, the programmer cannot write application modules independently, without worrying that they might interfere with one another. Rather than forcing programmers to carefully merge multiple pieces of application logic by hand, a Pyretic program can combine multiple policies together using one of several policy composition operators, including parallel composition and sequential composition.

On existing SDN controller platforms, monitoring is merely a side-effect of installing rules that send packets to the controller, or accumulate byte and packet counters. Programmers must painstakingly create rules that simultaneously monitor network conditions and perform the right forwarding actions. Instead, Pyretic integrates monitoring into the policy function and supports a high-level query API. The programmer can easily combine monitoring and forwarding using parallel composition. Since the policy a network programmer desires may change over time, Pyretic also has facilities for creating a dynamic policy whose behavior will change over time, as specified by the programmer. Composition operators can be applied to these dynamic policies just as easily as fixed static ones.

Finally, Pyretic offers a rich topology-abstraction facility that allow programmers to apply policy functions to an abstract view of the underlying network. This facility is particularly noteworthy in that it is actually an application built on top of Pyretic using the other abstractions of the language.

In this section, we illustrate the features of the language using examples. Along the way, we build towards a single-switch Pyretic application that dynamically splits incoming traffic across several server instances. We conclude by using topology abstraction to distribute this single-switch application across a network of many switches.

3.1 Network Policy as a Function

A controller application determines the policy for the network at any moment in time. A conventional OpenFlow program includes explicit logic that creates and sends rule-installation messages to switches (logic that includes defining the low-level bit-match patterns, priorities, and actions for these rules), and that registers
call-backs that poll traffic counters and handle packets sent to the controller.

In contrast, Pyretic hides these low-level details by allowing programmers to express policies as compact, abstract functions that take a packet (at a given location) as input, and return a set of new packets (at potentially different locations). Returning the empty set corresponds to dropping the packet. Returning a single packet corresponds to forwarding the packet to a new location. Returning multiple packets corresponds to multicast.

The simplest possible Pyretic policy is one where every switch floods each packet out all ports on the network spanning tree. In conventional OpenFlow programming, the controller application would perform one flow modification call for each switch in the network to install the rule whose pattern is “don’t care” on all bits, with a single action “flood” (if that action is even supported by the switch). In contrast, in Pyretic, the programmer simply writes one line:

\[
flood()\]

where \(flood()\) is interpreted as a function that takes a packet located at any port on any switch in the network as an input and outputs zero, one, or more copies of the same packet at the output ports of the switch it arrived at—one packet for each port on the network’s spanning tree. Hence, this simple policy will allow any collection of hosts to broadcast information to one another over a network. Moreover, the policy no longer depends upon specific switch features. The switches used need not implement a “flood” primitive themselves as the runtime system can choose to implement flooding behavior using other OpenFlow actions—a good thing since the “flood” action is an optional feature in OpenFlow 1.0.

Of course, Pyretic programmers will typically write much more sophisticated policies. Here’s a fragment of a policy that uses several more Pyretic features to route a packet with destination IP 10.0.0.1 across switches A and B.

\[
\begin{align*}
&\text{match(switch=A) } &\text{match(dstip='10.0.0.1')} > &\text{fwd(6)} \quad + \\
&\text{match(switch=B) } &\text{match(dstip='10.0.0.1')} > &\text{fwd(7)}
\end{align*}
\]

Here, we use predicate policies (including match and conjunction) to disambiguate between packets based on their location in the network as well as their contents; we use modification policies (such as \(fwd\)) to process packets and direct where they go; and we use composition operators (such as \(\rightarrow\), parallel composition and \(>>\), sequential composition) to put together policy components. Each of these features, as well as others, will be explained in the upcoming sections; Table 1 lists several of the most common basic Pyretic policies.

In this slightly more elaborate policy, there are components that look somewhat like OpenFlow rules—they match different kinds of packets and perform different actions. However, as the simpler \(flood\) example shows, these policies do not necessarily map to OpenFlow rules in a one-to-one fashion. Consequently, Pyretic programmers must discard the rule-based mental programming model and adopt the functional one. We believe doing so encourages programmers to focus their minds entirely on the hard problems: The fundamental, high-level logic required to implement the application properly, not the low-level encoding of that logic in terms of hardware abstractions and a series of controller-level event handlers. This also leads to much more concise code, avoids replicating related functionality, and reduces the risk of accidental inconsistencies between different parts of the application.

3.2 From Bit Patterns to Boolean Predicates

An OpenFlow rule matches packets based on a bit pattern in the header fields, where each bit is a 0, 1, or “don’t care.” However, expressing a policy in terms of bit patterns is tedious. For example, matching all packets except those with a destination IP address of 10.0.0.1 requires two rules. The first, higher-priority rule matches all packets destined to 10.0.0.1, so that all remaining packets “fall through” to the second, lower-priority rule that has a wildcard in each bit position. Similarly, matching either 10.0.0.3 or 10.0.0.4 requires two rules, one for each IP address (as there is no single bit-pattern that matches both).

Instead of bit patterns in packet-header fields, Pyretic allows programmers to write basic predicates of the form \(\text{match}(f=v)\), demanding that a field \(f\) match an abstract value \(v\) (such as an IP address). They can then construct more complicated predicates using standard Boolean operators such as \(\text{and} (\&), \text{or} (\text{||}), \text{and not} (~)\). Intuitively, all these predicates act as filters: If the incoming packet satisfies the predicate, the packet passes through the filter untouched, presumably to be processed in some interesting way by some subsequent part of the policy. If the incoming packet does not satisfy the predicate, it is dropped (i.e., the empty set of packets is generated as a result). For example, the Pyretic programmer simply writes

\[
\text{~match(dstip='10.0.0.1')}
\]

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>identity</td>
<td>returns original packet</td>
</tr>
<tr>
<td>none</td>
<td>returns empty set</td>
</tr>
<tr>
<td>(\text{match}(f=v))</td>
<td>identity if field (f) matches (v), none otherwise</td>
</tr>
<tr>
<td>(\text{modify}(f=v))</td>
<td>returns packet with field (f) set to (v)</td>
</tr>
<tr>
<td>(\text{fwd}(a))</td>
<td>(\text{modify}(\text{port}=a))</td>
</tr>
<tr>
<td>flood()</td>
<td>returns one packet for each local port on the network spanning tree</td>
</tr>
</tbody>
</table>

Table 1: Selected Policies
match(switch=1) &
 (match(dstip='10.0.0.3') | match(dstip='10.0.0.4'))

and the runtime system ensures that packets are filtered accordingly.

3.3 Virtual Packet Header Fields
A policy function in Pyretic can match on a packet-header field (using \texttt{match(f=v)}), and can assign a new value to a header field (using \texttt{modify(f=v)}). As we have seen, the fields available to the programmer include the standard physical OpenFlow packet header fields, such as source and destination IP. However, unlike OpenFlow packets, Pyretic packets provide a single unified abstraction for both the physical packet and its associated metadata. To this end, Pyretic packets also include standard virtual fields \texttt{switch} and \texttt{port} that together specify a packet’s current physical location in the network. In fact, the \texttt{fwd} policy we saw previously is actually just a special case of \texttt{mod!} Reassigning the value of \texttt{port} simply “moves” the packet from the port on which it arrived to the port on which it will be sent. The burden of managing all the details needed to ensure that each packet is forwarded out the correct physical port is left to the Pyretic runtime.

Finally, Pyretic programmers are free to define their own, new virtual fields and use them however they choose, treating each Pyretic packet as if it were a Python dictionary. For example, a programmer may want to assign a packet to one of several paths through a network. Tagging the packet with the chosen path makes its easier to direct the packet over each of the hops in the path. In Pyretic, the programmer could create a new \texttt{path} field and assign it a particular path identifier. Here again, the burden of realizing this falls to the Pyretic runtime, which, under the hood, represent the appropriate information using a conventional packet tagging mechanism such as VLANs or MPLS labels.

3.4 Parallel and Sequential Composition
A controller application often needs to perform multiple tasks (e.g., routing, server load balancing, monitoring, and access control) that affect handling of the same traffic. Rather than writing one monolithic program, programmers should be able to combine multiple independently written modules together. In traditional OpenFlow programming, different modules could easily interfere with each other. One module might overwrite the rules installed by another, or drop packets another module expects to see at the controller. Instead, Pyretic offers two simple composition operators that allow programmers to combine policies in series or in parallel.

3.4.1 Sequential Composition
Sequential composition (\texttt{>>}) treats the output of one policy as the input to another. Consider a simple routing policy:

\[
\text{match(dstip='2.2.2.8')} >> \text{fwd(1)}
\]

In this policy, the \texttt{match} predicate filters out all packets that do not have destination 2.2.2.8. The \texttt{>>} operator places this filter in sequence with the forwarding policy \texttt{fwd(1)}. Hence any packets that get by the filter are forwarded out port 1. Likewise, the programmer may write

\[
\text{match(switch=1)} >> \text{match(dstip='2.2.2.8')} >> \text{fwd(1)}
\]

to specify that packets located at switch 1 and destined to IP address 2.2.2.8 should be forwarded out port 1. This code uses sequential composition to compose three independent policies. The first two policies happen to be filters (though they may be arbitrary policies). Of course, filtering packets first by one condition and then by a second condition is equivalent to filtering packets by the conjunction (\&) of the two conditions.

3.4.2 Parallel Composition
Parallel composition (\texttt{+}) applies two policy functions on the same packet and combines the results. For example, a routing policy \texttt{R} could be expressed as

\[
\text{R} = (\text{match(dstip='2.2.2.8')} >> \text{fwd(1)}) + (\text{match(dstip='2.2.2.9')} >> \text{fwd(2)})
\]

Those packets destined to 2.2.2.8 will be forwarded out port 1, while those destined to 2.2.2.9 will be forwarded out port 2.

As another example, consider a server load-balancing policy that splits request traffic directed to destination 1.2.3.4 over two backend servers (2.2.2.8 and 2.2.2.9), depending on the first bit of the source IP address (packets with sources starting with 0 fall under IP prefix 0.0.0.0/1 and are routed to 2.2.2.8). This results in the policy \texttt{L}:

\[
\text{L} = \text{match(dstip='1.2.3.4')} \gg
 ((\text{match(srcip='0.0.0.0/1')} >> \text{modify(dstip='2.2.2.8')}) +
 (\text{match(srcip='0.0.0.0/1')} >> \text{modify(dstip='2.2.2.9')}))
\]

It happens that this policy adheres to a particularly common pattern: a clause matching one predicate is immediately followed by a clause matching its negation. Of course, in conventional programming languages, such patterns are just if statements. In Pyretic, \texttt{if_} is an abbreviation that makes policies easier to read:

\[
\text{L} = \text{match(dstip='1.2.3.4')} \gg
 \text{if_}(\text{match(srcip='0.0.0.0/1')} >
 \text{modify(dstip='2.2.2.8'))},
 \text{modify(dstip='2.2.2.9'))}
\]

3.4.3 Code Reuse
One final example highlights the power of Pyretic’s composition operators to enable modular programming. In just one line, the programmer can write
producing a new policy that that first selects a server replica, and then forwards the traffic to that chosen replica. As simple as it seems, this kind of composition is impossible to achieve when programming directly against the OpenFlow API.

3.5 Traffic Monitoring

In traditional OpenFlow programs, collecting traffic statistics involves installing rules (so that byte and packet counters are available), issuing queries to poll these counters, parsing the responses when they arrive, and combining counter values across multiple rules.

In Pyretic, network monitors are just another simple type of policy that may be conjoined to any of the other policies seen so far. Table 2 shows several different kinds of monitoring policies available in Pyretic, including policies that monitor raw packets, packet counts, and byte counts. The forwarding behavior of these policies is the same as a policy that drops all packets.

For example, a programmer may create a new query for the first packet arriving from each unique source IP

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>packets(limit=n, group_by=[f1,f2,...])</td>
<td>callback on every packet received for up to n packets identical on fields f1,f2,...</td>
</tr>
<tr>
<td>count_packets(interval=t, group_by=[f1,f2,...])</td>
<td>count every packet received callback every t seconds providing count for each group</td>
</tr>
<tr>
<td>count_bytes(interval=t, group_by=[f1,f2,...])</td>
<td>count bytes received callback every t seconds providing count for each group</td>
</tr>
</tbody>
</table>

Table 2: Query Policies

The programmer then creates a new instance of `rrlb` (say one running on switch 3 and sending requests to server replicas at 2.2.2.8 and 2.2.2.9) in the standard way

```python
def rrlb(DynamicPolicy):
    def __init__(self,s, servers):
        self.switch = s
        self.servers = servers
        ...
        self.register_callback(self.round_robin)
        self.policy = match(dstport=80) >> Q
        Q.register_callback(self.printer)
        ...
```

Note that here the query Q is defined as in the previous subsection; the only difference is that the the programmer registers `round_robin` as the callback, instead of `printer`. The programmer then creates a new instance of `rrlb` producing a policy that can be used in exactly the same ways as any other. For example, to compose server load balancing with routing, we might write the following.

```python
rrlb_on_switch3 >> route
```

3.7 Topology Abstraction

In traditional OpenFlow programming, a controller application written for one switch cannot easily be ported
to run over a distributed collection of switches, or be
made to share switch hardware with other packet-processing
applications. In the case of our load balancer example,
we may well want to use it to balance load coming in
from many different hosts connected to many different
switches in a complex network. And yet, we would pre-
fer to avoid conflating the relatively simple functional-
ity of the load balancer with the logic needed to route
the traffic across the network. A good solution to this
problem is to use topology abstraction to partition the
application into two pieces: one that does the load bal-
ancing as before, and if the balancer was implemented on
one big switch that could connect all hosts together, and
one that decides on the lower level routes that imple-
ment it. This also serves a secondary purpose: the load
balancer is reusable and can operate over any network of
switches.

To develop this kind of modular program, Pyretic of-
fers a library for topology abstraction that can represent
multiple underlying switches as a single derived virtual
switch, or, alternatively, one underlying switch as mul-
tiple derived virtual switches.

For example, to produce a policy that applies the cli-
ent policy rrrib_on_switch3() to a derived (i.e., vir-
tual) switch 3 that abstracts switches 1, 2, and 3 as
a single merged switch, the programmer simply uses
Pyretic’s virtualize() function, inputting the desired
policy function and the topology transformation:

\[
\text{virtualize(rrrib_on_switch3,}
\text{merge(name=3,}
\text{from_switches=[1,2,3]))}
\]

Here, the merge topology transformation takes the name
of a single virtual switch and a list of underlying switches
that used to create it. Inside, the merge transforma-
tion applies shortest-path routing to direct packets from
one edge link to another over the underlying switches.

The virtualize policy then implements a transforma-
tion of the written policies (the client policy and
three auxiliary policies) using virtual header fields and
sequential composition to produce a single new policy
written for the underlying network [6]. The resulting
policy is exactly the same as any other Pyretic policy,
and can be both composed with other policies, or used
as the basis for yet another layer of virtualization.

4. PYRETIC RUNTIME

Of course, high-level programming abstractions are
only useful if they can be implemented efficiently on
the switches. This section provides a brief overview of
the Pyretic runtime system, focusing on the backend
interface to the OpenFlow switches and policy evalua-
tion.

4.1 Backend Interface

Pyretic’s runtime is designed to be used atop a va-
riety of different OpenFlow controller backends. The
Pyretic runtime connects via a standard socket to a
simple OpenFlow client that could be written on top of
any OpenFlow controller platform. The runtime ma-
nipulates the network by sending messages to the cli-
ent (e.g., to inject packets, modify rules, and issue counter
reads). Likewise messages from the client keep Pyretic
updated regarding network events (e.g., packet ins, port
status events, counter values read). This design enables
Pyretic to take advantage of the best controller technol-
gy available, and allows the system to be entirely self-
contained. The current Pyretic runtime comes packaged
with an OpenFlow client written on the popular POX
controller platform.

4.2 Policy Evaluation

The Pyretic runtime implements an interpreter that
evaluates an input packet against the current policy.
In its simplest mode of operation, all packets are ini-
tially evaluated by this interpreter. Concurrently, the
runtime keeps track of currently active queries, updates
to dynamic policies, and modifications to the network
topology. When it is safe to do so, the runtime reac-
tively installs rules on switches to handle future packets that
would undergo the same evaluation (e.g., packets from
the same TCP connection). In ongoing work, we are
adding support for proactive installation of rules, which
will install rules on switches before they are needed,
and yet another layer of virtualization.

5. CONCLUSIONS

Pyretic lowers the barrier to creating sophisticated
SDN applications. Pyretic comes with several example
of common enterprise and data-center network applica-
tions (e.g., hub, MAC-learning switch, traffic monitor,
firewall, ARP server, network virtualization, and gate-
way router). Since the initial release of Pyretic in April
2013, the community of developers has grown quickly.
Some have built new applications from scratch, while
others have ported systems originally written on other
platforms.

In one case, the Resonance [9] system for event-driven
control was re-written in Pyretic—taking approximately
one programmer-day and resulting in a six-fold reduc-
tion in code size over an earlier version written on the
NOX controller platform. These savings were realized
thanks to Pyretic’s declarative design and powerful yet
concise policy language. Short expressions involving ba-
Basic policies, such as match and fwd combined with composition operators, replaced complex and delicate code specifying various packet handlers and the logic they contained: packet matching, modification and injection, as well as OpenFlow rule construction and installation. In fact, Pyretic’s focus on modular design enabled the Resonance team to encode more complex policies than had been available in the NOX version.

Pyretic has also been featured in Georgia Tech’s SDN Coursera course [10] where it was used as the platform for one of the course’s three programming assignments.

In addition to enhancing our runtime system with proactive compilation support, in our ongoing work we are also making extensions to the language and runtime system to support new features, such as quality-of-service mechanisms and parsing of packet contents. Additionally, We are creating more sophisticated applications, including RADIUS and DHCP services (to authenticate end hosts and assign them IP addresses) and wide-area traffic-management solutions for Internet Service Providers at SDN-enabled Internet Exchange Points.

We welcome newcomers to our community, whether they are interested in using Pyretic or in contributing to its development. Please visit our website, join our discuss list, or email us.

6. ACKNOWLEDGEMENTS

Our work is supported in part by ONR grant N00014-09-1-0770 and NSF grants 1111698, 1111520, 1016937, 1253165 and 0964409, a Sloan Research Fellowship, and a NSF/CRA Computing Innovation Fellowship. Any opinions, findings, and recommendations are those of the authors and do not necessarily reflect the views of the NSF, CRA, ONR, or the Sloan Foundation.

7. REFERENCES