CSci 8363 Backpropagation Fall 2017

Consider a network of the form

input hidderlayer outedayer
X -V 5 % >0 - y - WS Z >0 - z
Xg=1 . Vo=1 -« - artificial variables for biases
X1 ):’1 -0- Y1 %1 -g- 7
X2 - - Y -0~ Y2 - - 2 -g- Z
-V S . - W S
Xp 9n -0- Yn 2m - 0- Znm
whereg is a "sigmoid" function and
Vi =Vjo+ VjiXs + VjoXo + -+ VX, for j=1,---,n
Zj = Wip + Wigy1 + WigYp + -+ Wy, for i=1,---,m

E@S wherex is a p-vector,y, § aren-vec-
tors,z, 2 arem-vectors,V is ann x (p + 1) matrix of weights, an@V/ is anm x (n + 1) matrix of weights.

We gply an inpuix to the network, yielding an outpmt Then the error is

In matrix notation, this can be writt§rn=V Egg and z=W

0
E=%gzl—t1)2+(zz—t2)2+---+(zm—tm)2D

wheret; is the desired output for thevgh inputx. The goal is to minimize the errd, by gradient
descent. W compute the following partial desdtives, by repeated use of the chain rule:

0E 0E 0z . .
(a)dETZ:a 62: =(z -t) (%) fori=1,2,---,m
0E _ OE _0y; . .
(b) y; Eaiyjzaiyj F&)‘/; = (G1Waj + oWy + -+ -+ SmWiy) [ (9;) for j=1,2,---,n
aE _ D=1,2,3,"',m aE _ Dj=11213|"'!n
(c)a—wij—diyj forgjzo,l,Z,---,n (d)ﬁ_ijk for 20.1,2:--.p

If we use the sigmoid function which ranges between 0 asg 5(8) = 1/ (1 + €°%) theng (8 =s(1-59).
If we use the sigmoid function which ranges froml to +1: s=g(§ =2/(1+e %) -1 then
g (8) = 1- <. In dther case, thg, 2 variables are not needed.

The formula(c) means, for example, that a small chadgg to a weightw; will changeE by
Aw;ay; = Aw;(z - t)d (2)y; = Aw;[0(z - t;)y;. If these small changes were applied at once, Ehen
would change b)[ij Aw; oy, as bng as the sum of squares of the's are small enoughFor afixed
sum of squares, the biggest reductiorEt@an be had by settingw;; = -n(z —t;)[{ly; for a suitable
scalary (called "learning rate™). Similar updatesMaare induced by formuléd).

For a dngle layer network (e.g. Perceptrons), pretend thaythere the inputs, and consider only
theW = (w;) weights and their corresponding updates induce@pgnd(c).

We then use the followingv@rall method: Gien samplesx, ... x"\) each with a desired output
t@ ...t we go hrough the following loopr(is called the “learning rate”):

Forl=1,2,...Ndo
« Let x!) be applied as the inputto the network with as the corresponding desired output.
« Compute the outputs from all the nodesz, and all the partial devitives ove.
* Apply the correctiongc): wi — w; —ndyj and(d) vix « Vi —ny; X, foralli, j, k.

End.

One round through the entire loop forlatlonstitutes one "Epoch."
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ADDENDUM X
The output of the sigmoid function which ranges between 0 asd 4(5) =1/(1+e™>) can be consid-
ered as special case of the following "softmax” function:

A - O A . [
9(Z) = exp Zk/? exp z = 1/% +exp(-Z) DZ exp z 0
i U ik
where the denominator serves to normalize all the outputs so thatlthap to 1. (Here we use the nota-
tion: expx = €*.) Thederiative is
g (20) = 9(2)(1 - 9(2))

Treating the outputg(2,) as pobabilities, we can consider using the Klv8gence as the error function:
E=- gl logz; +t,logz, +-- -+t log ng’f a function of justt
wherez, = g(2,). We havethe dervatives
dlog(z,) _ dlog(zc) 0z

1
I =—[l-z)=1-z2
62k aZk 62k Zy k( k) K

The denative d this particulae with respect to anindividual 7, is

, OE OE 0z [tQ
5= =-—0 =""T71-z)=tQl-z
The remaining formulagb), (c), (d) above gill apply unchanged.For this case formuldc) means, for
example, that a small chandev; to a weightw; will changeE by Aw; gy = Aw;ti(1-z)y;. We @an
reduceE by settingAw; = - nt;(1-z)y;, for a suitable learning rate This amounts to a form of sim-
ple gradient descentaster gradient descent algorithms are aisilable.



