
CSci 8363 Backpropagation Fall 2017
Consider a network of the form

input hiddenlayer outerlayer
x → V → ŷ → g → y → W → ẑ → g → z

x0 ≡ 1 . . . y0 ≡ 1 . . . artificial variables for biases
x1 ŷ1 → g → y1 ẑ1 → g → z1

x2 → → ŷ2 → g → y2 → → ẑ2 → g → z2

. → V → . . → W → . .

. → → . . → → . .
xp ŷn → g → yn ẑm → g → zm

whereg is a "sigmoid" function and

ŷ j = v j0 + v j1x1 + v j2x2 + . . . + v jp xp

ẑi = wi0 + wi1y1 + wi2y2 + . . . + win yn

for

for

j = 1,. . . , n

i = 1,. . . , m

In matrix notation, this can be writtenŷ = V ⋅ 

1

x



and ẑ = W ⋅ 

1

y


, wherex is a p-vector,y, ŷ aren-vec-

tors,z, ẑ arem-vectors,V is ann × (p + 1) matrix of weights, andW is anm × (n + 1) matrix of weights.

We apply an inputx to the network, yielding an outputz. Then the error is

E = 1
2



(z1 − t1)2 + (z2 − t2)2 + . . . + (zm − tm)2



where ti is the desired output for the given input x. The goal is to minimize the errorE, by gradient
descent. We compute the following partial derivatives, by repeated use of the chain rule:

(a) δ i ≡
∂E

∂ẑi
=

∂E

∂zi
⋅

∂zi

∂ẑi
= (zi − ti ) ⋅ g’(ẑi )

(b) γ j ≡
∂E

∂ŷ j
=

∂E

∂y j
⋅

∂y j

∂ŷ j
= (δ1w1 j + δ2w2 j + . . . + δ mwmj) ⋅ g’(ŷ j )

(c)
∂E

∂wij
= δ i y j for





i = 1, 2, 3,. . . , m

j = 0, 1, 2,. . . , n

for i = 1, 2,. . . , m

for j = 1, 2,. . . , n

(d)
∂E

∂v jk
= γ j xk for





j = 1, 2, 3,. . . , n

k = 0, 1, 2,. . . , p

If we use the sigmoid function which ranges between 0 and 1:s = g(ŝ) = 1 / (1 + e−ŝ) theng’(ŝ) = s(1 − s).
If we use the sigmoid function which ranges from−1 to +1: s = g(ŝ) = 2 / (1 + e−2ŝ) − 1 then
g’(ŝ) = 1 − s2. In either case, the ˆy, ẑ variables are not needed.

The formula(c) means, for example, that a small change∆wij to a weightwij will changeE by
∆wij δ i y j = ∆wij (zi − ti )g’(ẑi )y j = ∆wij [⋅](zi − ti )y j . If these small changes were applied at once, thenE
would change byΣij ∆wij δ i y j , as long as the sum of squares of the∆w’s are small enough.For a fixed
sum of squares, the biggest reduction toE can be had by setting∆wij = −η(zi − ti )[⋅]y j for a suitable
scalarη (called "learning rate"). Similar updates toV are induced by formula(d).

For a single layer network (e.g. Perceptrons), pretend that they’s are the inputs, and consider only
theW = (wij ) weights and their corresponding updates induced by(a) and(c).

We then use the following overall method: Given samplesx(1), . . . ,x(N) each with a desired output
t(1), . . . ,t(N), we go through the following loop (η is called the ‘‘learning rate’’):

For l = 1, 2, . . . ,N do
• Let x(l ) be applied as the inputx to the network witht as the corresponding desired output.
• Compute the outputs from all the nodes,y, z, and all the partial derivatives above.
• Apply the corrections(c): wij ← wij − ηδ i y j and(d) v jk ← v jk − ηγ j xk, for all i , j , k.

End.

One round through the entire loop for alll constitutes one "Epoch."



CSci 5521 - Fall 2014 Backpropagation Page 2

ADDENDUM
The output of the sigmoid function which ranges between 0 and 1,s = g(ŝ) = 1 / (1 + e−ŝ) can be consid-
ered as special case of the following "softmax" function:

g(ẑk) = exp ẑk/ i
Σ exp ẑi




= 1/1 + exp(−ẑk) ⋅
i=/ k
Σ exp ẑi



,

where the denominator serves to normalize all the outputs so that they add up to 1. (Here we use the nota-
tion: expx = ex.) Thederivative is

g’(ẑk) = g(ẑk)(1 − g(ẑk))

Treating the outputsg(ẑk) as probabilities, we can consider using the KL Divergence as the error function:

E = − 

t1 log z1 + t2 log z2 + . . . + tm log zm




+ a function of justt

wherezk = g(ẑk). We hav ethe derivatives

∂ log(zk)

∂ẑk
=

∂ log(zk)

∂zk
⋅

∂zk

∂ẑk
=

1

zk
⋅ zk(1 − zk) = 1 − zk

The derivative of this particularE with respect to any individual ẑk is

(a’) δ i ≡
∂E
∂ẑi

=
∂E
∂zi

⋅
∂zi

∂ẑi
= 


ti

zi




⋅ zi (1 − zi ) = ti ⋅ (1 − zi )

The remaining formulas(b), (c), (d) above still apply unchanged.For this case formula(c) means, for
example, that a small change∆wij to a weightwij will changeE by ∆wij δ i y j = ∆wij ti (1 − zi )y j . We can
reduceE by setting∆wij = − ηti (1 − zi )y j , for a suitable learning rateη. This amounts to a form of sim-
ple gradient descent.Faster gradient descent algorithms are also available.


