Consider a network of the form

input	hidden layer					outer layer		
\mathbf{x}	$\rightarrow V \rightarrow$	$\hat{\mathbf{y}}$	$\rightarrow g \rightarrow$	\mathbf{y}	$\rightarrow W \rightarrow$	$\hat{\mathbf{z}}$	$\rightarrow g \rightarrow$	z
$x_{0} \equiv 1$		\ldots		$y_{0} \equiv 1$	\cdots artific	va	ables for b	
x_{1}		\hat{y}_{1}	$\rightarrow g \rightarrow$	y_{1}		\hat{z}_{1}	$\rightarrow g \rightarrow$	z_{1}
x_{2}	$\rightarrow \quad \rightarrow$	\hat{y}_{2}	$\rightarrow g \rightarrow$	y_{2}	$\rightarrow \quad \rightarrow$	\hat{z}_{2}	$\rightarrow g \rightarrow$	z_{2}
.	$\rightarrow V \rightarrow$				$\rightarrow W \rightarrow$			
.	$\rightarrow \quad \rightarrow$.	$\rightarrow \quad \rightarrow$.		
x_{p}		\hat{y}_{n}	$\rightarrow g \rightarrow$	y_{n}		\hat{z}_{m}	$\rightarrow g \rightarrow$	z_{m}

where g is a "sigmoid" function and

$$
\begin{array}{lll}
\hat{y}_{j}=v_{j 0}+v_{j 1} x_{1}+v_{j 2} x_{2}+\cdots+v_{j p} x_{p} & \text { for } & j=1, \cdots, n \\
\hat{z}_{i}=w_{i 0}+w_{i 1} y_{1}+w_{i 2} y_{2}+\cdots+w_{i n} y_{n} & \text { for } & i=1, \cdots, m
\end{array}
$$

In matrix notation, this can be written $\hat{\mathbf{y}}=V \cdot\binom{1}{\mathbf{x}}$ and $\hat{\mathbf{z}}=W \cdot\binom{1}{\mathbf{y}}$, where \mathbf{x} is a p-vector, $\mathbf{y}, \hat{\mathbf{y}}$ are n-vectors, $\mathbf{z}, \hat{\mathbf{z}}$ are m-vectors, V is an $n \times(p+1)$ matrix of weights, and W is an $m \times(n+1)$ matrix of weights.

We apply an input \mathbf{x} to the network, yielding an output \mathbf{z}. Then the error is

$$
E=\frac{1}{2}\left(\left(z_{1}-t_{1}\right)^{2}+\left(z_{2}-t_{2}\right)^{2}+\cdots+\left(z_{m}-t_{m}\right)^{2}\right)
$$

where t_{i} is the desired output for the given input \mathbf{x}. The goal is to minimize the error E, by gradient descent. We compute the following partial derivatives, by repeated use of the chain rule:
(a) $\delta_{i} \equiv \frac{\partial E}{\partial \hat{z}_{i}}=\frac{\partial E}{\partial z_{i}} \cdot \frac{\partial z_{i}}{\partial \hat{z}_{i}}=\left(z_{i}-t_{i}\right) \cdot g^{\prime}\left(\hat{z}_{i}\right)$ for $i=1,2, \cdots, m$
(b) $\gamma_{j} \equiv \frac{\partial E}{\partial \hat{y}_{j}}=\frac{\partial E}{\partial y_{j}} \cdot \frac{\partial y_{j}}{\partial \hat{y}_{j}}=\left(\delta_{1} w_{1 j}+\delta_{2} w_{2 j}+\cdots+\delta_{m} w_{m j}\right) \cdot g^{\prime}\left(\hat{y}_{j}\right) \quad$ for $j=1,2, \cdots, n$
(c) $\frac{\partial E}{\partial w_{i j}}=\delta_{i} y_{j} \quad$ for $\left\{\begin{array}{l}i=1,2,3, \cdots, m \\ j=0,1,2, \cdots, n\end{array}\right.$
(d) $\frac{\partial E}{\partial v_{j k}}=\gamma_{j} x_{k} \quad$ for $\left\{\begin{array}{l}j=1,2,3, \cdots, n \\ k=0,1,2, \cdots, p\end{array}\right.$

If we use the sigmoid function which ranges between 0 and $1: s=g(\hat{s})=1 /\left(1+e^{-\hat{s}}\right)$ then $g^{\prime}(\hat{s})=s(1-s)$. If we use the sigmoid function which ranges from -1 to $+1: s=g(\hat{s})=2 /\left(1+e^{-2 \hat{s}}\right)-1$ then $g^{\prime}(\hat{s})=1-s^{2}$. In either case, the \hat{y}, \hat{z} variables are not needed.

The formula (c) means, for example, that a small change $\Delta w_{i j}$ to a weight $w_{i j}$ will change E by $\Delta w_{i j} \delta_{i} y_{j}=\Delta w_{i j}\left(z_{i}-t_{i}\right) g^{\prime}\left(\hat{z}_{i}\right) y_{j}=\Delta w_{i j}[\cdot]\left(z_{i}-t_{i}\right) y_{j}$. If these small changes were applied at once, then E would change by $\sum_{i j} \Delta w_{i j} \delta_{i} y_{j}$, as long as the sum of squares of the Δw 's are small enough. For a fixed sum of squares, the biggest reduction to E can be had by setting $\Delta w_{i j}=-\eta\left(z_{i}-t_{i}\right)[\cdot] y_{j}$ for a suitable scalar η (called "learning rate"). Similar updates to V are induced by formula (d).

For a single layer network (e.g. Perceptrons), pretend that the y 's are the inputs, and consider only the $W=\left(w_{i j}\right)$ weights and their corresponding updates induced by (a) and (c).

We then use the following overall method: Given samples $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(N)}$ each with a desired output $\mathbf{t}^{(1)}, \ldots, \mathbf{t}^{(N)}$, we go through the following loop (η is called the "learning rate"):

For $l=1,2, \ldots, N$ do

- Let $\mathbf{x}^{(l)}$ be applied as the input \mathbf{x} to the network with \mathbf{t} as the corresponding desired output.
- Compute the outputs from all the nodes, \mathbf{y}, \mathbf{z}, and all the partial derivatives above.
- Apply the corrections (c): $w_{i j} \leftarrow w_{i j}-\eta \delta_{i} y_{j}$ and (d) $v_{j k} \leftarrow v_{j k}-\eta \gamma_{j} x_{k}$, for all i, j, k.

End.

One round through the entire loop for all l constitutes one "Epoch."

ADDENDUM

The output of the sigmoid function which ranges between 0 and $1, s=g(\hat{s})=1 /\left(1+e^{-\hat{s}}\right)$ can be considered as special case of the following "softmax" function:

$$
\mathbf{g}\left(\hat{z}_{k}\right)=\exp \hat{z}_{k} /\left(\sum_{i} \exp \hat{z}_{i}\right)=1 /\left(1+\exp \left(-\hat{z}_{k}\right) \cdot \sum_{i \neq k} \exp \hat{z}_{i}\right)
$$

where the denominator serves to normalize all the outputs so that they add up to 1 . (Here we use the notation: $\exp x=e^{x}$.) The derivative is

$$
\mathbf{g}^{\prime}\left(\hat{z}_{k}\right)=\mathbf{g}\left(\hat{z}_{k}\right)\left(1-\mathbf{g}\left(\hat{z}_{k}\right)\right)
$$

Treating the outputs $\mathbf{g}\left(\hat{z}_{k}\right)$ as probabilities, we can consider using the KL Divergence as the error function:

$$
\mathbf{E}=-\left(t_{1} \log z_{1}+t_{2} \log z_{2}+\cdots+t_{m} \log z_{m}\right)+\text { a function of just } t
$$

where $z_{k}=\mathbf{g}\left(\hat{z}_{k}\right)$. We have the derivatives

$$
\frac{\partial \log \left(z_{k}\right)}{\partial \hat{z}_{k}}=\frac{\partial \log \left(z_{k}\right)}{\partial z_{k}} \cdot \frac{\partial z_{k}}{\partial \hat{z}_{k}}=\frac{1}{z_{k}} \cdot z_{k}\left(1-z_{k}\right)=1-z_{k}
$$

The derivative of this particular \mathbf{E} with respect to any individual \hat{z}_{k} is

$$
\left(\mathbf{a}^{\prime}\right) \delta_{i} \equiv \frac{\partial \mathbf{E}}{\partial \hat{z}_{i}}=\frac{\partial \mathbf{E}}{\partial z_{i}} \cdot \frac{\partial z_{i}}{\partial \hat{z}_{i}}=\left(\frac{t_{i}}{z_{i}}\right) \cdot z_{i}\left(1-z_{i}\right)=t_{i} \cdot\left(1-z_{i}\right)
$$

The remaining formulas (b), (c), (d) above still apply unchanged. For this case formula (c) means, for example, that a small change $\Delta w_{i j}$ to a weight $w_{i j}$ will change \mathbf{E} by $\Delta w_{i j} \delta_{i} y_{j}=\Delta w_{i j} t_{i}\left(1-z_{i}\right) y_{j}$. We can reduce \mathbf{E} by setting $\Delta w_{i j}=-\eta t_{i}\left(1-z_{i}\right) y_{j}$, for a suitable learning rate η. This amounts to a form of simple gradient descent. Faster gradient descent algorithms are also available.

