CSci 2021, Fall 2018 Written Exercise Set 5

This assignment is not due. It is for practice.

Problem 1:

The following code snippets do not perform as well as they could. Write new opti-
mized versions of each that will compute the same results, but more quickly.

Part A:

The following function simply calculates the range of a vector (the struct definition
of the vector is also given). Recommendation: use separate accumulators to improve
instruction-level parallelism.

struct vector {
int length;
int* arr;

3

int range(struct vectorx* v) {
if (!lv->length) {
return NULL;

+
int max = v->arr[0];
int min = v->arr[0];

for (int i = 1; i < v->length; ++i) {
if (v->arr([i] > max) {
max = v->arrl[i];
}
if (v->arr[i] < min) {
min = v->arrl[i];
}
+

return max - min;

Part B:

The following function takes in an M*N matrix of ints and returns an array of just
two ints, both of which correspond to a different sum. The first element of the result
array should be the sum of matrix times two. The second element of the result array
should be the sum of the matrix with 10 added to each element. Recommendation:
improve temporal locality.

int* compute_sums(int** mat, int* res) {
//zero out result array
res[0] 0;
res[1] = 0;
//loops to compute sum of mat * 2
for (dnt i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
res[0] += mat[i][j] * 2;
}
}
//loops to compute sum of mat + 10
for (dnt i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
res[1] += mat[i] [j] + 10;
}
}

return res;

Problem 2:

In this problem you will practice memory access using virtual memory. The proper-
ties you need to know are:

e 14-bit virtual addresses
e 12-bit physical addresses

e (64 byte page size

Below is the TLB. It has 16 entries and is 4-way associative.

Set | Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid
0 0D |- 0 1C |- 0 03 |12 1 09 |- 0
1 01 |- 0 05 |- 0 05 |- 0 08 | OA 1
2 05 |2A 1 11 | 1D 1 01 |- 0 0A | - 0
3 0B | 05 1 0A |- 0 07 | 1C 1 02 |15 1

Below is the first 24 entries of the page table.

VPN | PPN | Valid
00 - 0
01 - 0
02 5D 1
03 - 0
04 - 0
05 - 0
06 1A 1
07 06 1
08 - 0
09 - 0
0A 1B 1
0B 15 1
0C 12 1
OE - 0
OF 01 1
10 - 0
11 2A 1
12 BC |1
13 - 0
14 03 1
15 09 1
16 - 0
17 - 0
18 - 0

Below is the cache. Its properties are also follows:
e 16 lines, 4-byte block size
e physically addressed

e direct mapped

Index | Tag | Valid | Byte Offset #0 | Byte Offset #1 | Byte Offset #2 | Byte Offset #3
0 11 0 - - - -

1 15 1 07 21 AA 3B
2 Bl |0 - - - -

3 19 1 07 14 B1 2A
4 3A |1 11 Al 05 17
5) 21 0 - - - -

6 2A |0 - - - -

7 0B |1 31 B2 1A 27
8 16 |0 - - - -

9 B2 |0 - - - -
A Cl |0 - - - -
B 12 1 FO 41 2A 54
C 81 |0 - - - -
D 35 |1 00 14 A4 D1
E 21 1 06 1C D1 17
F AB | 0 - - - -

A. Draw a diagram of how the 14-bit virtual addresses will be divided into VPN and
VPO. Also show how the VPN will be further divided into the TLBT and TLBI.

B. Draw a diagram of how the 12-bit physical addresses will be divided into the PPN
and PPO. Also show how the PPN and PPO will be further divided into the CT,
CI, CO.

For the follow virtual addresses, give the following information:

Virtual address in binary
VPN

TLB index

TLB tag

TLB hit (hit or miss)
Page fault (yes or no)
PPN

Physical address in binary
cache offset

cache index

cache tag

hit? (yes or no)

e byte
C. 0x32E
D. 0x2C5

E. 0x57B

Problem 3:

The following functions, find range and bubble_sort, contain branches in their
inner loops that might hurt performance because of misprediction. However the
branching is not required: it would be possible to compute the same results using
conditional moves instead. To help the compiler see how to do this, rewrite these
functions without using if statements: instead, the code should only make choices
using the ? : ternary operator, where the second and third arguments of the ternary
operator do not have any side-effects.
Comment on how effective this transformation will be as an optimization.

int find_range(int* arr, length) {
int min = arr[0];
int max = arr[0];
for (int i = 0; i < length; ++i) {
if (arr[i] > max) {
max = arr[i];
+
else if (arr[i] < min) {
min = arr[i];
}
+
return max - min;

3

int bubble_sort(int arr[], length) {
int 1i,];
for (int j = 0; j < lenth - 1; j++) {
for (i = 0; i < (length - j - 2); i++) {
if (arr[i] > arr[i+1]) {
int temp = arr[i];
arr[i] = arr([i+1];
arr[i+1] = temp;
}
+
+
}

Problem 4: (This problem is related to the textbook’s 9.10)

On a Unix/Linux system, the mmap system call can be used to request the kernel to
allocate a virtual memory region on behalf of a process. mmap is somewhat analogous
to malloc, but the allocation is done by the operating system for larger memory
regions (typically mmap is used for regions whose size is a multiple of the page size,
so at least 4K bytes). There is also a system call munmap, which is the counterpart
of free for a region allocated with mmap.

Like malloc, the memory allocation performed by mmap is subject to fragmen-
tation: the virtual address of a region cannot change once it has been allocated,
so depending on the layout of regions, it might be that it is impossible to satisfy
a request, even when the amount of available virtual memory is sufficient. Explain
with a detailed example how this can happen. Assume that were are on a sys-
tem with a 32-bit virtual address space, and that mmap returns regions in the range
0x40000000 through 0xb0000000. You can assume that before the first de-allocation
with munmap, mmap will perform allocations sequentially, returning the first free region
with the lowest address. Describe a sequence of mmap and munmap operations leading
to a fragmented state where it is impossible for the operating system to satisfy a
request to mmap 100MB, even though more than 1GB of virtual memory is free in
the range that mmap uses. (There are many such sequences possible. You might want
to consider the effect of allocating regions of different sizes, and the order in which
they are deallocated.)

You don’t have to write code for your scenario, just describe it with enough detail
that it is clear what will happen.

