
1

1

Here early? Try going to

and see if you can answer an ice cream question

Course Overview and Introduction

CSci 2021: Machine Architecture and Organization
Lecture #1, September 5th, 2018

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron

http://chimein.cla.umn.edu/

2

Overview

 Course themes

 Four realities

 Intermission: ChimeIn

 How the course fits into the CS curriculum

 Logistics

3

Course Theme:
Abstraction Is Good But Don’t Forget Reality
 Most CS courses emphasize abstraction

 Abstract data types

 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs

 Need to understand details of underlying implementations

 Useful outcomes
 Become more effective programmers

 Able to find and eliminate bugs efficiently

 Able to understand and tune for program performance

 Prepare for later “systems” classes in CS & EE

 Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems

4

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Floats: Yes!

 Ints:

 40000 * 40000 → 1600000000

 50000 * 50000 → ??

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Ints: Yes!

 Floats:

 (1e20 + -1e20) + 3.14 --> 3.14

 1e20 + (-1e20 + 3.14) --> ??

Cartoon source: xkcd.com/571

5

Code Security Example
/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

 Similar to code found in FreeBSD’s implementation of
getpeername

 There are legions of smart people trying to find vulnerabilities
in programs

6

Typical Usage
/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, MSIZE);

printf("%s\n", mybuf);

}

http://chimein.cla.umn.edu/

2

7

Malicious Usage

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, -MSIZE);

. . .

}

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

8

Computer Arithmetic

 Does not generate random values
 Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
 Due to finiteness of representations

 Integer operations satisfy “ring” properties

 Commutativity, associativity, distributivity

 Floating point operations satisfy “ordering” properties

 Monotonicity, values of signs

 Observation

 Need to understand which abstractions apply in which contexts

 Important issues for compiler writers and serious application programmers

9

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write full programs in assembly

 Compilers are much better & more patient than you are

 But, assembly is key to the machine-level execution model
 Behavior of programs in the presence of bugs

 High-level language models break down

 Tuning program performance

 Understand optimizations done or not done by the compiler

 Understanding sources of program inefficiency

 Implementing system software

 Compiler has machine code as target

 Operating systems must manage process state

 Creating / fighting malware

 x86 assembly is the lingua franca

10

Assembly Code Example

 Time Stamp Counter
 Special 64-bit register in Intel-compatible machines

 Incremented every clock cycle

 Read with rdtsc instruction

 Application
 Measure time (in clock cycles) required by procedure

double t;

start_counter();

P();

t = get_counter();

printf("P required %f clock cycles\n", t);

11

Code to Read Counter

 Write small amount of assembly code using GCC’s asm facility

 Inserts assembly code into machine code generated by
compiler

/* Return the cycle count as a 64-bit integer */

unsigned long access_counter(void)

{

unsigned long high, low;

asm("rdtsc"

: "=d" (high), "=a" (low));

return (high << 32) | low;

}

12

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded

 It must be allocated and managed

 Many applications are memory dominated

 Memory referencing bugs are especially pernicious

 Effects are distant in both time and space

 Memory performance is not uniform

 Cache and virtual memory effects can greatly affect program performance

 Adapting program to characteristics of memory system can lead to major
speed improvements

3

13

Memory Referencing Bug Example

 Result is system specific

fun(0) → 3.14

fun(1) → 3.14

fun(2) → 3.1399998664856

fun(3) → 2.00000061035156

fun(4) → 3.14

fun(6) → Segmentation fault

typedef struct {

int a[2];

double d;

} struct_t;

double fun(int i) {

volatile struct_t s;

s.d = 3.14;

s.a[i] = 1073741824; /* Possibly out of bounds */

return s.d;

}

14

Memory Referencing Bug Example
typedef struct {

int a[2];

double d;

} struct_t;

fun(0) → 3.14

fun(1) → 3.14

fun(2) → 3.1399998664856

fun(3) → 2.00000061035156

fun(4) → 3.14

fun(6) → Segmentation fault

Location accessed by

fun(i)

Explanation:

Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

15

Memory Referencing Errors

 C and C++ do not provide any memory protection
 Out of bounds array references

 Invalid pointer values

 Abuses of malloc/free

 Can lead to nasty bugs
 Whether or not bug has any effect depends on system and compiler

 Action at a distance

 Corrupted object logically unrelated to one being accessed

 Effect of bug may be first observed long after it is generated

 How can I deal with this?

 Program in Java, Python, Ruby, ML, etc.

 Understand what possible interactions may occur

 Use or develop tools to detect referencing errors (e.g. Valgrind)

16

Memory System Performance Example

 Hierarchical memory organization

 Performance depends on access patterns
 Including how step through multi-dimensional array

void copyji(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)

dst[i][j] = src[i][j];

}

21 times slower
(Pentium 4)

17

Why The Performance Differs

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
e
a
d

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

copyij

copyji

18

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!

 And even exact op count does not predict performance
 Easily see 10:1 performance range depending on how code written

 Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

 Must understand system to optimize performance

 How programs compiled and executed

 How to measure program performance and identify bottlenecks

 How to improve performance without destroying code modularity and
generality

4

19

Example Matrix Multiplication

 Standard desktop computer, vendor compiler, using optimization flags

 Both implementations have exactly the same operations count (2n3)

 What is going on?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)

20

MMM Plot: Analysis
Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

 Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

 Effect: fewer register spills, L1/L2 cache misses, and TLB misses

21

Intermisssion: ChimeIn

 I’ll periodically break up lectures with opportunities for you to
think about the material and maybe talk with the people sitting
next to you

 To anonymously submit answers, we’ll use ChimeIn

 If you have a laptop with you, please go to:

http://chimein.cla.umn.edu/

 And answer today’s (non-CS) question

 (Can also supposedly set up to answer with a cell phone)

22

Role within Computer Science

CSci 4203
Computer

Architecture

CSci 5161
Compilers

CSci 4211
Networks

CSci 5271
Security

CSci 1[19][13]3
Programming, data structures

CSci 4061
OSes

Machine Architecture and Organization
Underlying principles for hardware and
software

CSci
2021

CSci 5204
Adv. Computer

Architecture

Machine
Code

Virtual
Memory CPUs, Logic

23

Course Perspective

 Most Systems Courses are Builder-Centric
 Computer Architecture (CSci 4203)

 Design pipelined processor in Verilog

 Compilers (CSci 5161)

 Write compiler for simple language

 2021 is Programmer-Centric
 Purpose is to show how by knowing more about the underlying system,

one can be more effective as a programmer

 Including, enable you to write programs that are more reliable and
efficient

 Not just a course for dedicated hackers

 We bring out the hidden hacker in everyone

 Cover material in this course that you won’t see elsewhere

24

Things That Are Different This Semester

 Lab sections instead of discussion sections
 More interactive discussion and hands-on assistance

 More in-lecture coverage of C and GDB
 Tools you’ll use throughout the course

 Less coverage of some more specialized topics
 E.g., floating-point rounding, pipelining implementation, instruction-level

parallelism

 See the textbook if you’re still curious

 Allowing external references for homework assignments

 Prohibition was unrealistic; but still not necessary or recommended

 Smaller to non-existent end-of-semester curve

 Adjust for difficulty as we go, to be more predictable

http://chimein.cla.umn.edu/

5

25

Textbooks

 Required: Randal E. Bryant and David R. O’Hallaron,
 “Computer Systems: A Programmer’s Perspective, Third Edition”

(CS:APP3e), Prentice Hall, 2016

 http://csapp.cs.cmu.edu

 Paper version recommended

 Tests are open book, open notes, any paper, no electronics

 Used quite heavily

 How to solve assignments

 Practice problems with similar style as exam problems

 Supplemental: a book about C
 Labs, homework, and tests require reading and writing code in C

 One free tutorial is recommended on the course site

 Other tutorial/reference books can also substitute

26

Course Components

 Lectures: Higher level concepts

 Lab Sections
 Wednesdays in 1-250 Keller. Try new ideas out in a supportive

environment, graded only on attendance.

 Hands-on Assignments (5)
 The heart of the course, fun but often time-consuming

 About 2 weeks each

 Provide in-depth understanding of an aspect of systems

 Programming and measurement

 Written Exercise Sets (5)

 Practice thinking and writing, similar to tests, partially graded

 Two Midterms and a Final Exam

 Test your understanding of concepts & mathematical principles

27

Electronic Resources

 Class Web Page:
 http://www-users.cs.umn.edu/classes/Fall-2018/csci2021-010/

 Complete schedule of lectures, exams, and assignments

 Lecture slides, assignments, practice exams, solutions

 Watch for announcements

 Moodle Page
 Discussion forums

 Online turn-in of hands-on assignments

 Where to send electronic questions?

1. Moodle forum

2. cs2021f18-010-help@umn.edu (general mailing list)

3. Individual staff members have higher latency

28

Policies: Assignments and Exams

 Groups? No.
 You must work alone on all homework assignments

 Hand-in process
 Hands-on assignments due online, by 11:55pm on a weekday evening

 Exercise sets due on paper, by start of class on Mondays

 Conflicts
 There will be no makeup midterms

 One excused missed midterm will be replaced by more weight on final

 Appealing grades
 Within 7 days of completion of grading

 Following procedure described in syllabus and forum

 Note, we will regrade the whole assignment/exam

29

Facilities

 Do labs using CSELabs Linux machines
 Accessible from on-campus labs or remotely (VOLE/FastX, SSH)

 Get an account if you don’t have one already, login with UMN account
name and password

 Working on your own machines may sometimes be possible, but is not a
priority for support by course staff

 Grade based on how it runs on our machines, so at least be sure to test
there

30

Timeliness

 Late exercises and hands-on assignments
 Late period is 24 hours from due date, 85% credit

 For assignments after class, bring to instructor’s office (4-225E Keller)

 No credit after 24 hours

 Catastrophic events
 Major illness, death in family, …, (full list in syllabus)

 Are an exception, and can be excused

 Advice

 The course is fast-paced

 Once you start running late, it’s really hard to catch up

http://csapp.cs.cmu.edu/
mailto:cs2021s15-staff@cs.umn.edu

6

31

Cheating

 What is cheating?
 Sharing code: by copying, retyping, looking at, or supplying a file

 Coaching: helping your friend to write a lab, line by line

 Copying code/text from previous course or from elsewhere on WWW

 What is NOT cheating?
 Explaining how to use systems or tools

 Helping others with high-level design issues

 Getting ideas from public books or web sites, if you give credit

 Penalty for cheating:

 Minimum: 0 grade on assignment or exam, report to campus OSCAI

 Detection of cheating:

 We check with both human and automated efforts

 Avoid surprises that would be unpleasant for all of us

32

Policies: Grading

 Exams (60%): weighted 15%, 15%, 30% (final)

 Hands-on Assignments (20%)

 Written Exercise Sets (15%)

 Attending at least 12 out of 15 lab sections (5%)

 Guaranteed:

 ≥ 85%: at least A-

 ≥ 72%: at least B-

 ≥ 60%: at least C-

 Curve:
 May apply, in your favor only, so that grade distribution is similar to

historical averages.

33

C Language Basics

 Topics
 Variables and operations, control flow and functions, data structures

 Differences from Java and high-level C++

 Just enough to get you started: various topics return in more depth later

 Assignments
 HA1: Write a modest 19x3-style program, but in pure C

34

Data Representation

 Topics
 Bit-level operations

 Machine-level integers and floating-point

 C operators and things that can go wrong

 Assignments
 HA2 (formerly “Data lab”): Manipulating bits

35

Machine-level Program Representation

 Topics
 Assembly language programs

 Representation of C control and data structures

 E.g., what does a compiler do?

 How dynamic memory allocation works

 Assignments
 HA3 (formerly “Bomb lab”): Defusing a binary bomb with a debugger

 HA4 (formerly “Malloc lab”): Implement your own memory allocator

36

CPU Architecture

 Topics
 The parts of a CPU and how they work together

 How CPUs save time by doing multiple things at once (pipelining)

 Lab activities
 Work with a CPU simulator

 Implement your own instruction

7

37

The Memory Hierarchy

 Topics
 Memory technology, memory hierarchy, caches, disks, locality

 How virtual memory works

 Assignments
 HA5: Simulate and optimize cache behavior

38

Shorter Topics

 Optimization
 Some code features that are good or bad for performance

 Profiling code to know what parts are slow

 Linking
 How compilers put code and data together into a final program

 How code from libraries can be loaded as a program runs

39

Welcome
and Enjoy!

