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Here early? Try going to

and see if you can answer an ice cream question

Course Overview and Introduction

CSci 2021: Machine Architecture and Organization
Lecture #1, September 5th, 2018

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron

http://chimein.cla.umn.edu/
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Overview

 Course themes

 Four realities

 Intermission: ChimeIn

 How the course fits into the CS curriculum

 Logistics
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Course Theme:
Abstraction Is Good But Don’t Forget Reality
 Most CS courses emphasize abstraction

 Abstract data types

 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs

 Need to understand details of underlying implementations

 Useful outcomes
 Become more effective programmers

 Able to find and eliminate bugs efficiently

 Able to understand and tune for program performance

 Prepare for later “systems” classes in CS & EE

 Compilers, Operating Systems, Networks, Computer Architecture, 
Embedded Systems
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Great Reality #1: 
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Floats: Yes!

 Ints:

 40000 * 40000  → 1600000000

 50000 * 50000  → ??

 Example 2: Is (x + y) + z =  x + (y + z)?
 Unsigned & Signed Ints: Yes!

 Floats:

 (1e20 + -1e20) + 3.14 --> 3.14

 1e20 + (-1e20 + 3.14) --> ??

Cartoon source: xkcd.com/571
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Code Security Example
/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

 Similar to code found in FreeBSD’s implementation of 
getpeername

 There are legions of smart people trying to find vulnerabilities 
in programs
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Typical Usage
/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, MSIZE);

printf("%s\n", mybuf);

}

http://chimein.cla.umn.edu/
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Malicious Usage

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, -MSIZE);

. . .

}

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}
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Computer Arithmetic

 Does not generate random values
 Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
 Due to finiteness of representations

 Integer operations satisfy “ring” properties

 Commutativity, associativity, distributivity

 Floating point operations satisfy “ordering” properties

 Monotonicity, values of signs

 Observation

 Need to understand which abstractions apply in which contexts

 Important issues for compiler writers and serious application programmers
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Great Reality #2: 
You’ve Got to Know Assembly
 Chances are, you’ll never write full programs in assembly

 Compilers are much better & more patient than you are

 But, assembly is key to the machine-level execution model
 Behavior of programs in the presence of bugs

 High-level language models break down

 Tuning program performance

 Understand optimizations done or not done by the compiler

 Understanding sources of program inefficiency

 Implementing system software

 Compiler has machine code as target

 Operating systems must manage process state

 Creating / fighting malware

 x86 assembly is the lingua franca
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Assembly Code Example

 Time Stamp Counter
 Special 64-bit register in Intel-compatible machines

 Incremented every clock cycle

 Read with rdtsc instruction

 Application
 Measure time (in clock cycles) required by procedure

double t;

start_counter();

P();

t = get_counter();

printf("P required %f clock cycles\n", t);
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Code to Read Counter

 Write small amount of assembly code using GCC’s asm facility

 Inserts assembly code into machine code generated by 
compiler

/* Return the cycle count as a 64-bit integer */

unsigned long access_counter(void)

{

unsigned long high, low;

asm("rdtsc"   

: "=d" (high), "=a" (low)); 

return (high << 32) | low;

}
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Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded

 It must be allocated and managed

 Many applications are memory dominated

 Memory referencing bugs are especially pernicious

 Effects are distant in both time and space

 Memory performance is not uniform

 Cache and virtual memory effects can greatly affect program performance

 Adapting program to characteristics of memory system can lead to major 
speed improvements
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Memory Referencing Bug Example

 Result is system specific

fun(0) → 3.14

fun(1) → 3.14

fun(2) → 3.1399998664856

fun(3) → 2.00000061035156

fun(4) → 3.14

fun(6) → Segmentation fault

typedef struct {

int a[2];

double d;

} struct_t;

double fun(int i) {

volatile struct_t s;

s.d = 3.14;

s.a[i] = 1073741824; /* Possibly out of bounds */

return s.d;

}
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Memory Referencing Bug Example
typedef struct {

int a[2];

double d;

} struct_t;

fun(0)   → 3.14

fun(1)  → 3.14

fun(2)  → 3.1399998664856

fun(3)  → 2.00000061035156

fun(4)  → 3.14

fun(6) → Segmentation fault

Location accessed by 

fun(i)

Explanation:

Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t
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Memory Referencing Errors

 C and C++ do not provide any memory protection
 Out of bounds array references

 Invalid pointer values

 Abuses of malloc/free

 Can lead to nasty bugs
 Whether or not bug has any effect depends on system and compiler

 Action at a distance

 Corrupted object logically unrelated to one being accessed

 Effect of bug may be first observed long after it is generated

 How can I deal with this?

 Program in Java, Python, Ruby, ML, etc.

 Understand what possible interactions may occur

 Use or develop tools to detect referencing errors (e.g. Valgrind)
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Memory System Performance Example

 Hierarchical memory organization

 Performance depends on access patterns
 Including how step through multi-dimensional array

void copyji(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)

dst[i][j] = src[i][j];

}

21 times slower
(Pentium 4)
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Why The Performance Differs
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Great Reality #4: There’s more to 
performance than asymptotic complexity

 Constant factors matter too!

 And even exact op count does not predict performance
 Easily see 10:1 performance range depending on how code written

 Must optimize at multiple levels: algorithm, data representations, 
procedures, and loops

 Must understand system to optimize performance

 How programs compiled and executed

 How to measure program performance and identify bottlenecks

 How to improve performance without destroying code modularity and 
generality
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Example Matrix Multiplication

 Standard desktop computer, vendor compiler, using optimization flags

 Both implementations have exactly the same operations count (2n3)

 What is going on?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)
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MMM Plot: Analysis
Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

 Reason for 20x: Blocking or tiling, loop unrolling, array scalarization, 
instruction scheduling, search to find best choice

 Effect: fewer register spills,  L1/L2 cache misses, and TLB misses
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Intermisssion: ChimeIn

 I’ll periodically break up lectures with opportunities for you to 
think about the material and maybe talk with the people sitting 
next to you

 To anonymously submit answers, we’ll use ChimeIn

 If you have a laptop with you, please go to:

http://chimein.cla.umn.edu/

 And answer today’s (non-CS) question

 (Can also supposedly set up to answer with a cell phone)
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Role within Computer Science

CSci 4203
Computer

Architecture

CSci 5161
Compilers

CSci 4211
Networks

CSci 5271
Security

CSci 1[19][13]3
Programming, data structures

CSci 4061
OSes

Machine Architecture and Organization
Underlying principles for hardware and
software

CSci
2021

CSci 5204
Adv. Computer

Architecture

Machine
Code

Virtual
Memory CPUs, Logic
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Course Perspective

 Most Systems Courses are Builder-Centric
 Computer Architecture (CSci 4203)

 Design pipelined processor in Verilog

 Compilers (CSci 5161)

 Write compiler for simple language

 2021 is Programmer-Centric
 Purpose is to show how by knowing more about the underlying system, 

one can be more effective as a programmer

 Including, enable you to write programs that are more reliable and 
efficient

 Not just a course for dedicated hackers

 We bring out the hidden hacker in everyone

 Cover material in this course that you won’t see elsewhere
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Things That Are Different This Semester

 Lab sections instead of discussion sections
 More interactive discussion and hands-on assistance

 More in-lecture coverage of C and GDB
 Tools you’ll use throughout the course

 Less coverage of some more specialized topics
 E.g., floating-point rounding, pipelining implementation, instruction-level 

parallelism

 See the textbook if you’re still curious

 Allowing external references for homework assignments

 Prohibition was unrealistic; but still not necessary or recommended

 Smaller to non-existent end-of-semester curve

 Adjust for difficulty as we go, to be more predictable

http://chimein.cla.umn.edu/
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Textbooks

 Required: Randal E. Bryant and David R. O’Hallaron, 
 “Computer Systems: A Programmer’s Perspective, Third Edition” 

(CS:APP3e), Prentice Hall, 2016

 http://csapp.cs.cmu.edu

 Paper version recommended

 Tests are open book, open notes, any paper, no electronics

 Used quite heavily

 How to solve assignments

 Practice problems with similar style as exam problems

 Supplemental: a book about C
 Labs, homework, and tests require reading and writing code in C

 One free tutorial is recommended on the course site

 Other tutorial/reference books can also substitute
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Course Components

 Lectures: Higher level concepts

 Lab Sections
 Wednesdays in 1-250 Keller. Try new ideas out in a supportive 

environment, graded only on attendance.

 Hands-on Assignments (5)
 The heart of the course, fun but often time-consuming

 About 2 weeks each

 Provide in-depth understanding of an aspect of systems

 Programming and measurement

 Written Exercise Sets (5)

 Practice thinking and writing, similar to tests, partially graded

 Two Midterms and a Final Exam

 Test your understanding of concepts & mathematical principles
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Electronic Resources

 Class Web Page: 
 http://www-users.cs.umn.edu/classes/Fall-2018/csci2021-010/

 Complete schedule of lectures, exams, and assignments

 Lecture slides, assignments, practice exams, solutions

 Watch for announcements

 Moodle Page
 Discussion forums

 Online turn-in of hands-on assignments

 Where to send electronic questions?

1. Moodle forum

2. cs2021f18-010-help@umn.edu (general mailing list)

3. Individual staff members have higher latency
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Policies: Assignments and Exams

 Groups? No.
 You must work alone on all homework assignments

 Hand-in process
 Hands-on assignments due online, by 11:55pm on a weekday evening

 Exercise sets due on paper, by start of class on Mondays

 Conflicts
 There will be no makeup midterms

 One excused missed midterm will be replaced by more weight on final

 Appealing grades
 Within 7 days of completion of grading

 Following procedure described in syllabus and forum

 Note, we will regrade the whole assignment/exam
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Facilities

 Do labs using CSELabs Linux machines
 Accessible from on-campus labs or remotely (VOLE/FastX, SSH)

 Get an account if you don’t have one already, login with UMN account 
name and password

 Working on your own machines may sometimes be possible, but is not a 
priority for support by course staff

 Grade based on how it runs on our machines, so at least be sure to test 
there
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Timeliness

 Late exercises and hands-on assignments
 Late period is 24 hours from due date, 85% credit

 For assignments after class, bring to instructor’s office (4-225E Keller)

 No credit after 24 hours

 Catastrophic events
 Major illness, death in family, …, (full list in syllabus)

 Are an exception, and can be excused

 Advice

 The course is fast-paced

 Once you start running late, it’s really hard to catch up

http://csapp.cs.cmu.edu/
mailto:cs2021s15-staff@cs.umn.edu
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Cheating

 What is cheating?
 Sharing code: by copying, retyping, looking at, or supplying a file

 Coaching: helping your friend to write a lab, line by line

 Copying code/text from previous course or from elsewhere on WWW

 What is NOT cheating?
 Explaining how to use systems or tools

 Helping others with high-level design issues

 Getting ideas from public books or web sites, if you give credit

 Penalty for cheating:

 Minimum: 0 grade on assignment or exam, report to campus OSCAI

 Detection of cheating:

 We check with both human and automated efforts

 Avoid surprises that would be unpleasant for all of us
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Policies: Grading

 Exams (60%): weighted 15%, 15%, 30% (final)

 Hands-on Assignments (20%)

 Written Exercise Sets (15%)

 Attending at least 12 out of 15 lab sections (5%)

 Guaranteed:

 ≥ 85%: at least A-

 ≥ 72%: at least B-

 ≥ 60%: at least C-

 Curve:
 May apply, in your favor only, so that grade distribution is similar to 

historical averages. 
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C Language Basics

 Topics
 Variables and operations, control flow and functions, data structures

 Differences from Java and high-level C++

 Just enough to get you started: various topics return in more depth later

 Assignments
 HA1: Write a modest 19x3-style program, but in pure C
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Data Representation

 Topics
 Bit-level operations

 Machine-level integers and floating-point

 C operators and things that can go wrong

 Assignments
 HA2 (formerly “Data lab”): Manipulating bits
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Machine-level Program Representation

 Topics
 Assembly language programs

 Representation of C control and data structures

 E.g., what does a compiler do?

 How dynamic memory allocation works

 Assignments
 HA3 (formerly “Bomb lab”): Defusing a binary bomb with a debugger

 HA4 (formerly “Malloc lab”): Implement your own memory allocator
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CPU Architecture

 Topics
 The parts of a CPU and how they work together

 How CPUs save time by doing multiple things at once (pipelining)

 Lab activities
 Work with a CPU simulator

 Implement your own instruction
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The Memory Hierarchy

 Topics
 Memory technology, memory hierarchy, caches, disks, locality

 How virtual memory works

 Assignments
 HA5: Simulate and optimize cache behavior
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Shorter Topics

 Optimization
 Some code features that are good or bad for performance

 Profiling code to know what parts are slow

 Linking
 How compilers put code and data together into a final program

 How code from libraries can be loaded as a program runs
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Welcome 
and Enjoy! 


