
1

1

Here early? Try going to

and see if you can answer an ice cream question

Course Overview and Introduction

CSci 2021: Machine Architecture and Organization
Lecture #1, September 5th, 2018

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron

http://chimein.cla.umn.edu/

2

Overview

 Course themes

 Four realities

 Intermission: ChimeIn

 How the course fits into the CS curriculum

 Logistics

3

Course Theme:
Abstraction Is Good But Don’t Forget Reality
 Most CS courses emphasize abstraction

 Abstract data types

 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs

 Need to understand details of underlying implementations

 Useful outcomes
 Become more effective programmers

 Able to find and eliminate bugs efficiently

 Able to understand and tune for program performance

 Prepare for later “systems” classes in CS & EE

 Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems

4

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Floats: Yes!

 Ints:

 40000 * 40000 → 1600000000

 50000 * 50000 → ??

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Ints: Yes!

 Floats:

 (1e20 + -1e20) + 3.14 --> 3.14

 1e20 + (-1e20 + 3.14) --> ??

Cartoon source: xkcd.com/571

5

Code Security Example
/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

 Similar to code found in FreeBSD’s implementation of
getpeername

 There are legions of smart people trying to find vulnerabilities
in programs

6

Typical Usage
/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, MSIZE);

printf("%s\n", mybuf);

}

http://chimein.cla.umn.edu/

2

7

Malicious Usage

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, -MSIZE);

. . .

}

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

8

Computer Arithmetic

 Does not generate random values
 Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
 Due to finiteness of representations

 Integer operations satisfy “ring” properties

 Commutativity, associativity, distributivity

 Floating point operations satisfy “ordering” properties

 Monotonicity, values of signs

 Observation

 Need to understand which abstractions apply in which contexts

 Important issues for compiler writers and serious application programmers

9

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write full programs in assembly

 Compilers are much better & more patient than you are

 But, assembly is key to the machine-level execution model
 Behavior of programs in the presence of bugs

 High-level language models break down

 Tuning program performance

 Understand optimizations done or not done by the compiler

 Understanding sources of program inefficiency

 Implementing system software

 Compiler has machine code as target

 Operating systems must manage process state

 Creating / fighting malware

 x86 assembly is the lingua franca

10

Assembly Code Example

 Time Stamp Counter
 Special 64-bit register in Intel-compatible machines

 Incremented every clock cycle

 Read with rdtsc instruction

 Application
 Measure time (in clock cycles) required by procedure

double t;

start_counter();

P();

t = get_counter();

printf("P required %f clock cycles\n", t);

11

Code to Read Counter

 Write small amount of assembly code using GCC’s asm facility

 Inserts assembly code into machine code generated by
compiler

/* Return the cycle count as a 64-bit integer */

unsigned long access_counter(void)

{

unsigned long high, low;

asm("rdtsc"

: "=d" (high), "=a" (low));

return (high << 32) | low;

}

12

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded

 It must be allocated and managed

 Many applications are memory dominated

 Memory referencing bugs are especially pernicious

 Effects are distant in both time and space

 Memory performance is not uniform

 Cache and virtual memory effects can greatly affect program performance

 Adapting program to characteristics of memory system can lead to major
speed improvements

3

13

Memory Referencing Bug Example

 Result is system specific

fun(0) → 3.14

fun(1) → 3.14

fun(2) → 3.1399998664856

fun(3) → 2.00000061035156

fun(4) → 3.14

fun(6) → Segmentation fault

typedef struct {

int a[2];

double d;

} struct_t;

double fun(int i) {

volatile struct_t s;

s.d = 3.14;

s.a[i] = 1073741824; /* Possibly out of bounds */

return s.d;

}

14

Memory Referencing Bug Example
typedef struct {

int a[2];

double d;

} struct_t;

fun(0) → 3.14

fun(1) → 3.14

fun(2) → 3.1399998664856

fun(3) → 2.00000061035156

fun(4) → 3.14

fun(6) → Segmentation fault

Location accessed by

fun(i)

Explanation:

Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

15

Memory Referencing Errors

 C and C++ do not provide any memory protection
 Out of bounds array references

 Invalid pointer values

 Abuses of malloc/free

 Can lead to nasty bugs
 Whether or not bug has any effect depends on system and compiler

 Action at a distance

 Corrupted object logically unrelated to one being accessed

 Effect of bug may be first observed long after it is generated

 How can I deal with this?

 Program in Java, Python, Ruby, ML, etc.

 Understand what possible interactions may occur

 Use or develop tools to detect referencing errors (e.g. Valgrind)

16

Memory System Performance Example

 Hierarchical memory organization

 Performance depends on access patterns
 Including how step through multi-dimensional array

void copyji(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)

dst[i][j] = src[i][j];

}

21 times slower
(Pentium 4)

17

Why The Performance Differs

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
e
a
d

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

copyij

copyji

18

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!

 And even exact op count does not predict performance
 Easily see 10:1 performance range depending on how code written

 Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

 Must understand system to optimize performance

 How programs compiled and executed

 How to measure program performance and identify bottlenecks

 How to improve performance without destroying code modularity and
generality

4

19

Example Matrix Multiplication

 Standard desktop computer, vendor compiler, using optimization flags

 Both implementations have exactly the same operations count (2n3)

 What is going on?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)

20

MMM Plot: Analysis
Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

 Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

 Effect: fewer register spills, L1/L2 cache misses, and TLB misses

21

Intermisssion: ChimeIn

 I’ll periodically break up lectures with opportunities for you to
think about the material and maybe talk with the people sitting
next to you

 To anonymously submit answers, we’ll use ChimeIn

 If you have a laptop with you, please go to:

http://chimein.cla.umn.edu/

 And answer today’s (non-CS) question

 (Can also supposedly set up to answer with a cell phone)

22

Role within Computer Science

CSci 4203
Computer

Architecture

CSci 5161
Compilers

CSci 4211
Networks

CSci 5271
Security

CSci 1[19][13]3
Programming, data structures

CSci 4061
OSes

Machine Architecture and Organization
Underlying principles for hardware and
software

CSci
2021

CSci 5204
Adv. Computer

Architecture

Machine
Code

Virtual
Memory CPUs, Logic

23

Course Perspective

 Most Systems Courses are Builder-Centric
 Computer Architecture (CSci 4203)

 Design pipelined processor in Verilog

 Compilers (CSci 5161)

 Write compiler for simple language

 2021 is Programmer-Centric
 Purpose is to show how by knowing more about the underlying system,

one can be more effective as a programmer

 Including, enable you to write programs that are more reliable and
efficient

 Not just a course for dedicated hackers

 We bring out the hidden hacker in everyone

 Cover material in this course that you won’t see elsewhere

24

Things That Are Different This Semester

 Lab sections instead of discussion sections
 More interactive discussion and hands-on assistance

 More in-lecture coverage of C and GDB
 Tools you’ll use throughout the course

 Less coverage of some more specialized topics
 E.g., floating-point rounding, pipelining implementation, instruction-level

parallelism

 See the textbook if you’re still curious

 Allowing external references for homework assignments

 Prohibition was unrealistic; but still not necessary or recommended

 Smaller to non-existent end-of-semester curve

 Adjust for difficulty as we go, to be more predictable

http://chimein.cla.umn.edu/

5

25

Textbooks

 Required: Randal E. Bryant and David R. O’Hallaron,
 “Computer Systems: A Programmer’s Perspective, Third Edition”

(CS:APP3e), Prentice Hall, 2016

 http://csapp.cs.cmu.edu

 Paper version recommended

 Tests are open book, open notes, any paper, no electronics

 Used quite heavily

 How to solve assignments

 Practice problems with similar style as exam problems

 Supplemental: a book about C
 Labs, homework, and tests require reading and writing code in C

 One free tutorial is recommended on the course site

 Other tutorial/reference books can also substitute

26

Course Components

 Lectures: Higher level concepts

 Lab Sections
 Wednesdays in 1-250 Keller. Try new ideas out in a supportive

environment, graded only on attendance.

 Hands-on Assignments (5)
 The heart of the course, fun but often time-consuming

 About 2 weeks each

 Provide in-depth understanding of an aspect of systems

 Programming and measurement

 Written Exercise Sets (5)

 Practice thinking and writing, similar to tests, partially graded

 Two Midterms and a Final Exam

 Test your understanding of concepts & mathematical principles

27

Electronic Resources

 Class Web Page:
 http://www-users.cs.umn.edu/classes/Fall-2018/csci2021-010/

 Complete schedule of lectures, exams, and assignments

 Lecture slides, assignments, practice exams, solutions

 Watch for announcements

 Moodle Page
 Discussion forums

 Online turn-in of hands-on assignments

 Where to send electronic questions?

1. Moodle forum

2. cs2021f18-010-help@umn.edu (general mailing list)

3. Individual staff members have higher latency

28

Policies: Assignments and Exams

 Groups? No.
 You must work alone on all homework assignments

 Hand-in process
 Hands-on assignments due online, by 11:55pm on a weekday evening

 Exercise sets due on paper, by start of class on Mondays

 Conflicts
 There will be no makeup midterms

 One excused missed midterm will be replaced by more weight on final

 Appealing grades
 Within 7 days of completion of grading

 Following procedure described in syllabus and forum

 Note, we will regrade the whole assignment/exam

29

Facilities

 Do labs using CSELabs Linux machines
 Accessible from on-campus labs or remotely (VOLE/FastX, SSH)

 Get an account if you don’t have one already, login with UMN account
name and password

 Working on your own machines may sometimes be possible, but is not a
priority for support by course staff

 Grade based on how it runs on our machines, so at least be sure to test
there

30

Timeliness

 Late exercises and hands-on assignments
 Late period is 24 hours from due date, 85% credit

 For assignments after class, bring to instructor’s office (4-225E Keller)

 No credit after 24 hours

 Catastrophic events
 Major illness, death in family, …, (full list in syllabus)

 Are an exception, and can be excused

 Advice

 The course is fast-paced

 Once you start running late, it’s really hard to catch up

http://csapp.cs.cmu.edu/
mailto:cs2021s15-staff@cs.umn.edu

6

31

Cheating

 What is cheating?
 Sharing code: by copying, retyping, looking at, or supplying a file

 Coaching: helping your friend to write a lab, line by line

 Copying code/text from previous course or from elsewhere on WWW

 What is NOT cheating?
 Explaining how to use systems or tools

 Helping others with high-level design issues

 Getting ideas from public books or web sites, if you give credit

 Penalty for cheating:

 Minimum: 0 grade on assignment or exam, report to campus OSCAI

 Detection of cheating:

 We check with both human and automated efforts

 Avoid surprises that would be unpleasant for all of us

32

Policies: Grading

 Exams (60%): weighted 15%, 15%, 30% (final)

 Hands-on Assignments (20%)

 Written Exercise Sets (15%)

 Attending at least 12 out of 15 lab sections (5%)

 Guaranteed:

 ≥ 85%: at least A-

 ≥ 72%: at least B-

 ≥ 60%: at least C-

 Curve:
 May apply, in your favor only, so that grade distribution is similar to

historical averages.

33

C Language Basics

 Topics
 Variables and operations, control flow and functions, data structures

 Differences from Java and high-level C++

 Just enough to get you started: various topics return in more depth later

 Assignments
 HA1: Write a modest 19x3-style program, but in pure C

34

Data Representation

 Topics
 Bit-level operations

 Machine-level integers and floating-point

 C operators and things that can go wrong

 Assignments
 HA2 (formerly “Data lab”): Manipulating bits

35

Machine-level Program Representation

 Topics
 Assembly language programs

 Representation of C control and data structures

 E.g., what does a compiler do?

 How dynamic memory allocation works

 Assignments
 HA3 (formerly “Bomb lab”): Defusing a binary bomb with a debugger

 HA4 (formerly “Malloc lab”): Implement your own memory allocator

36

CPU Architecture

 Topics
 The parts of a CPU and how they work together

 How CPUs save time by doing multiple things at once (pipelining)

 Lab activities
 Work with a CPU simulator

 Implement your own instruction

7

37

The Memory Hierarchy

 Topics
 Memory technology, memory hierarchy, caches, disks, locality

 How virtual memory works

 Assignments
 HA5: Simulate and optimize cache behavior

38

Shorter Topics

 Optimization
 Some code features that are good or bad for performance

 Profiling code to know what parts are slow

 Linking
 How compilers put code and data together into a final program

 How code from libraries can be loaded as a program runs

39

Welcome
and Enjoy!

