
1

1

C Language Basics

CSci 2021: Machine Architecture and Organization
September 7th-12th, 2018

Slides and Instructor: Stephen McCamant

3

A history of C in one slide

 First developed in the early 1970s for Unix

 Originally by Dennis Richie, descended from BCPL and B

 Made Unix one of the first OSes not written in assembly

 Defined in a book by Kernighan and Richie (K&R)

 Popularity grew with Unix, then for microcomputers

 Standardized by ANSI/ISO in 1989/1990

 Object-oriented variants appeared in the 1980s:
 Objective-C and C++

 Java in turn derives largely from C++, in the 1990s

 Further standards in 1999 (C99) and 2011 (C11)

4

C as compared with C++ and Java

 Unlike Java and C++, C does not have:

 Classes

 Packages/namespaces

 Templates/generics

 Exceptions

 Operator or function overloading

 Anonymous functions/closures/lambdas

 A rich standard data-structure library

 Unlike Java, C allows potentially-unsafe operations:
 Uninitialized variables and memory

 Out-of-bounds array accesses

 Creating pointers from integers

 Deallocating memory that is still in use

5

C programs are made up of functions

 The primary unit of structure is a function

 AKA “procedure”, “subroutine”

type func(type arg1, type arg2)

{

statements

}

type type typename arg arg

statements

int add(int arg1, int arg2)

{

return arg1 + arg2;

}

6

Hello world in detail

#include <stdio.h>

int main(int argc, char **argv) {

printf("Hello, world!\n");

return 0;

}

standard library function
to print a message command-line arguments

standard library function
declarations

7

Return values and prototypes

 Functions can return a value with a return statement

 No return value, or no arguments, are signified by the
keyword void

 To tell the compiler about a function without defining it,
use a write a function prototype:

 In a single file program, prototypes mostly not needed if
functions are defined lower-level first
 But, give stylistic freedom to change function order

int add(int arg1, int arg2);

2

8

 Integer types:

 “unsigned” variants cannot be negative

 Common floating point types:
 float: usually 32 bits

 double: usually 64 bits

Numeric types

Type name Common minimum size

char 8 bits

short 16 bits

int 32 bits

long 32 bits – for us, 64 bits

long long 64 bits

9

Characters

 char’s name comes from representing characters

 Actually three types:
 signed char, -128 to 127

 unsigned char, 0 to 255

 char, might be either signed or unsigned

 On almost all systems, values 0-127 represent ASCII
 US-standardized code for roman alphabet, numbers, symbols, etc.

 Wider variety of standards for meanings of 128-255
 Windows-1252, Latin-1: add accented letters and a few symbols

 UTF-8: multiple bytes represent >100,000 Unicode characters

 Escape sequences starting with \ for hard-to-type ones:

 E.g., '\n' for newline, '\0' for character zero

10

Declaration, initialization, assignment

 A new variable is introduced with a declaration:

 Optionally, give it a value by including an initialization:

 An assignment statement changes the value of an
already-declared variable:

int weight, height;

int score = 100;

score = score - 5;

11

Intermisssion: ChimeIn

 I’ll periodically break up lectures with opportunities for
you to think about the material and maybe talk with the
people sitting next to you

 To anonymously submit answers, we’ll use ChimeIn

 If you have a laptop with you, please go to:
http://chimein.cla.umn.edu/course/view/2021

 And answer today’s (non-CS) question

 (Can also supposedly set up to answer with a cell phone)

12

Type conversion and casts

 Values are automatically converted between numeric
types, sometimes with strange effects:

 The act of converting can be written explicitly as a cast
operation:

long x = 1000000;

char c = x;

/* c is now 64 */

long x = 1000000;

char c = (char)x;

/* c is now 64 */

13

Local, global, and static

 A variable defined inside a function (local) is usually:

 Created once per call to the function

 Visible only inside the function

 Variable can be declared outside any function, global:
 Exists during the whole program

 Visible in any (later) function

 If a local variable is declared with keyword static:

 One version for the whole execution

 Still visible only inside the function

 E.g., useful for counter function

3

14

Arithmetic operators

 C has the standard math operators:
 +, - (both unary and binary)

 *, multiplication

 /, integer or floating-point division

 %, integer division remainder

 Precedence rules define the default grouping
 E.g., 1 + 2 * 3 is 1 + (2 * 3) i.e. 7, not 9

 When in doubt, use parentheses
 Rules are mostly, but not always, what you’d expect

15

Assignment abbreviations

 Unary ++ and -- add or subtract 1, respectively

 E.g., c++ is short for c = c + 1

 Also called increment and decrement

 Putting a = after an operator makes an update operator
 E.g., c += 10 is short for c = c + 10

 You can string together multiple assignment left-hand
sides
 assignment_grade = course_grade = 0;

16

Comparisons and logic

 Numbers can be compared with the usual operators:
 <, >

 <=, >=mean ≤, ≥

 ==, !=mean =, ≠; note double equals

 Integers used for logic (no separate Boolean type):
 0 represents false

 any non-zero interpreted as true, produced as 1

 (C99 defines <stdbool.h>, hasn’t caught on)

 Logic operators:
 && for and, || for or, ! for not

 (d != 0) && (n / d < 10) is safe (“short-circuiting”)

17

Arrays in C

 Arrays are the key building block for large data structures

 C arrays have limited features, allowing for simple
compilation strategies

 Local and global arrays can only have fixed size

 At runtime, no way to ask how long an array is

 No bounds checking

 First index is always 0

 Implementation is just a sequence of adjacent values

 C arrays are closely related with C’s pointers

18

Array syntax

 Syntax is based on square brackets [] as a suffix

 On a type, inside brackets is the size

 On a value, inside brackets is the index
 Can appear on left or right side of assignment

 Note, 0-based means index always less than size

double point[3] = {1.0, 1.0, 0.0};

point[0] = -2.0;

double dist =

sqrt(point[0]*point[0] +

point[1]*point[1] +

point[2]*point[2]);

19

Multidimensional arrays

 Repeat sets of brackets for tables with more numeric
indexes

 E.g., chess board:

 Note, not commas

 Again, only usable when the dimensions are fixed

char board[8][8];

board[0][0] = 'r';

4

20

Pointer basics

 A pointer is a value that stores the location of another
value
 As we’ll later see in detail, it’s implemented as a memory address

 The type of a pointer variable keeps track of the type of
what it can point to
 E.g., pointer-to-char, pointer-to-int

 Type declaration syntax puts a * before the variable
name:

int num, *num_ptr;

21

Basic pointer operations

 & creates a pointer

 If x is an int variable, &x is an int pointer, pointing at x

 * gets what the pointer points to

 If ip is an int pointer, *ip is the int it points at

 Also called “following” or “dereferencing”

 Multiple levels are possible

int i = 5;

int *ip = &i;

int **ipp = &ip;

(**ipp)++;

/* i and **ipp are now 6 */

“Declaration
resembles

use”

22

Pointer arithmetic

 Adding an integer to a pointer advances it by that number
of objects

 If p is an int *, p + 1 is a pointer to the int next to it

 Type indicates how much to move

 Programmer’s responsibility to know there is an int there

 p[i] is equivalent to *(p + i)

 Thus, a pointer is roughly equivalent to an array of
unknown size

 Array converted into pointer in most places it appears
 E.g. in function argument type, int x[] and int *x are

equivalent

23

Strings are arrays of characters

 String length is unknown at compile time
 Thus, type is char *

 Length of string indicated by \0 character after contents

 “Null termination”

 Many C programs don’t cope well with \0 characters in their input

void caesar_string(char *s, int amt) {

int i;

for (i = 0; s[i] != '\0'; i++) {

s[i] = rotate(s[i], amt);

}

}

24

String constants

 Put text inside double quote marks: "string"

 Can also include escape sequences

 Usually put \n at end of lines to be printed

 Normally string constants are read-only
 Type is const char *

 Can be used to initialize a modifiable character array

char a[] = "hi!";

/* size 4, including \0 */

char a[3] = "hi!";

/* size 3, no \0 */

25

Basics of printf

 Standard library function for formatted output

 First argument, format string, may contain format
specifiers starting with %

 Generally, each corresponds to a later argument

 Most basic format specifiers:
 %d: signed int, printed in decimal

 %g: double, in scientific notation if needed

 %s: char *, interpreted as string

printf("One %s one is %d\n",

"plus", 1 + 1);

/* One plus one is 2 */

5

26

if and if-else statements

 Basic way to make decisions. if does either something,
or nothing:

 if-else does one thing if true, other if false

if (x % 2 == 0)

printf("x is even\n");

if (x % 2 == 0)

printf("x is even\n");

else

printf("x is odd\n");

27

Blocks and indentation

 Use curly braces to group multiple statements, e.g. inside
an if statement
 Without braces, only one statement inside if

 Can declare variables inside a block, not visible outside

 Safer to use braces than not: they make grouping clear,
like parentheses
 Example “dangling else” ambiguity: else after nested ifs

 It is conventional to use indentation to show nesting level
 But compiler completely ignores whitespace

 Many opinions and arguments about where to put braces relative
to indentation

28

while and for loops

 A while loop repeats a statement/block as many times
as a condition is true (can be 0 times)

 A for loop groups a while with two other statements,
commonly assignment and update of the same variable

while (x > 0) {

x--;

} /* x is now 0 or negative */

for (A; B; C) D;

/* is equivalent to: */

A;

while (B) { D; C }

29

Leaving in the middle of a loop

 A break statement jumps to the end of the innermost
enclosing loop

 A continue statement jumps to the next iteration of a
loop
 For a for loop, the increment part is executed

 A return statement ends the entire function

 There is also a goto statement, but don’t use it

 One arguable application: jumping out of an outer loop

30

Intermission: HA1 out today

 First hands-on assignment: write a spell checker in C

 Non-interactive, just prints incorrect words and
suggestions

 Implement your own separate-chaining hash table

 We will have covered all the C you need by Wednesday’s
lecture

 Assignment due Monday, September 24th by 11:55pm

 Discussion forum enabled on Moodle page

 Turn-in will be on Moodle too

31

Debugging and debuggers

 You have probably already had the experience of making
a mistake in a program

 Speaking roughly, “debugging” is the process:

 After you know that your code is wrong

 But before you know how it is wrong

 Some kinds of debugging that don’t need much tool
support:

 Code review

 Rubber duck debugging

 Printf debugging

6

32

Debugging in the development cycle

Add
functionality

Edit

Compile

Test

Debug

33

What is a debugger for?

 Not to fix your bugs for you, alas

 Computers aren’t that smart yet

 Instead, helps you examine your program’s execution in
more detail
 See what is happening if something is obviously wrong

 Walk through normal execution, to compare with your
expectations

 Standard practice is source-level debugging
 I.e., the debugger shows your program in terms of its source code

 For binaries, made possible by debugging information (enabled
with compiler option -g)

34

The GNU debugger GDB

 Standard command-line, source and binary-level
debugger on Linux

 Start up with gdb ./my_program

 Supply program arguments to the GDB run command

 Abbreviated just r

 Or, use gdb --args ./my_program arg1 arg2

 This mode doesn’t work for redirection (shell <, >)

 Today: using GDB as a source-level debugger

35

break, step, next, continue

 Normally, GDB will execute your program normally

 To get it to stop to let you look around, turn on a
breakpoint with the command break (b)

 Argument can be function name, file and line number, others

 When the breakpoint is reached, your program will stop
and you can give GDB commands

 Run the program for one line with step (s)
 Variant next (n) does not go into other functions

 To go back to full-speed execution, use continue (c)

36

print

 The most important command for examining program
state is print (p)

 The argument is a source-level (i.e., C) expression

 Some features to know about
 Can do arithmetic

 Can refer to any variable in scope

 Can call functions

 Can do assignments

 p/x prints in hexadecimal (other formats also available)

37

Crashes, interrupts, and backtrace

 GDB will automatically stop if the program runs into a
crash like a segfault (technically: a Unix signal)

 To stop in the middle of execution, type Ctrl-C

 Good for debugging infinite loops

 The command backtrace (bt) summarizes all the
currently executing functions
 Similar to what Java and Python print for an unhandled exception

7

38

Watchpoints

 A watchpoint is sort of like a breakpoint, but based on
data

 The command watch takes an argument like print

 A watchpoint stops execution when that value changes

 Useful for tracking down problems caused to pointers

 If you use a source-level expression, you’ll usually get a
software watchpoint, which is slow
 Later, we’ll see hardware watchpoints

39

Pass by value

 The parameters to a C function are always just copies of
values from the caller
 Called “pass by value”

 I.e., they are local variables; changing them has no effect
outside the function

int global;

void f(int a, int b) {

a++; /* does not change global */

b--; /* does not change 2 + 2 */

}

void g(void) { f(global, 2 + 2); }

40

Recursion

 A function can call itself, directly or indirectly

 Each instance has its own copy of local variables
 Used to implement algorithms like quicksort, parsing

 Can also be used as an alternative form of loop
 Not as common in C as in functional languages

 Each instance usually uses some memory
 Deep recursion is not too common in C

41

Simulating pass by reference

 What if you want a function to modify caller’s variables?

 Called “pass by reference”

 Simulated in C by passing explicit pointers

 Commonly used instead of multiple return values
 Pointer parameters classified as “in”, “out”, “in/out”

void increment_by(int *ip, int amt) {

*ip += amt;

}

void f(void) {

int x;

increment_by(&x, 5);

}

42

Structures

 Data type that groups multiple named values

 Fields accessed with the . operator

 Compared to OO languages, like objects but without
methods, inheritance, or visibility restrictions

struct student {

char *name;

int grade;

};

struct student jane;

jane.name = "Jane";

jane.grade = 100;

43

Pointers to structures

 In more complex situations, you often want to refer to
structs with pointers

 sp->f is short for (*sp).f

 Note for Java users: Java object (references) are like
structure pointers

 Even though pointer aspect is not explicit in syntax

 E.g., two variables can refer to the same object

 Despite the symbol, Java’s . is like C’s ->

void mark_off(struct student *sp) {

sp->grade += 10;

}

8

44

Allocating structures

 If structs are like objects, what’s the equivalent of new?

 Malloc is a basic routine for dynamically allocating
memory
 Argument is size in bytes

 Return value has type void *, automatically converted

 Contents can be anything, you must initialize

 For now, learn as an idiom; we’ll see more details later
 Use with arrays

 Changing size with realloc

 Returning memory with free (don’t need to do this in HA1)

struct student *sp =

malloc(sizeof(struct student));

45

Null pointers

 Pointers have a special value that means not pointing at
anything
 Often used to represent endpoints or empty data structures

 Integer 0 converted to pointer, also NULL macro

 On most systems, internal representation is 0

 A null pointer counts as false, any other pointer is true

 Dereferencing a null pointer usually causes a segfault
 So you need to check first

46

Pointer and sharing pitfalls

 Passing a pointer to data is usually faster than copying it

 Only one copy of data exists; it is shared by different users

 But, sharing can also lead to unexpected behavior

 E.g., data changing when you do not expect it to

 Pointer to a local variable is valid only until its function
finishes
 Attempts to access later may cause a crash

 Sometimes you do want to make a copy of data
 Allocate a new struct/array and copy contents over

 strdup is a convenience function for duplicating a null-
terminated string

47

Example: linked list length

 Can iterate over a singly-linked list with a for loop:

struct list_node {

struct list_node *next;

int value;

};

int length(struct list_node *root) {

struct list_node *p; int i = 0;

for (p = root; p; p = p->next)

i++;

return i;

}

48

Choose your own adventure

 Two choices for the rest of today’s lecture

 More GDB features, demo

 More C features

 Register your choice at:
http://chimein.cla.umn.edu/course/view/2021

49

A few more fun operators

 The “ternary” operator ?: is like an if-then-else

 The comma , evaluates two expressions and returns the
right-hand one
 Useful for putting multiple assignments in a for loop header

 ++ and -- can also be prefixes, and return a value
 Prefix versions like ++x first update, then return new value, “pre-

increment”

 Postfix versions like x++ update, but return old value, “post-
increment”

 Overusing these operators can make code hard to read

printf("Found %d object%s\n", n,

((n == 1) ? "" : "s"));

9

50

typedef

 Used to create a type name that is a synonym for another
type
 Syntax is like that of a variable declaration

 Commonly used to save typing “struct”:

typedef char zipcode[5];

zipcode umn = "55455";

typedef struct list_node node;

node table[100];

51

switch statement

 Used for making a choice based on several integer values

switch ('a' + (letter % 26)) {

case 'a': case 'e': case 'i':

case 'o': case 'u':

printf("Vowel\n");

break;

case 'y':

printf("Maybe y\n");

break;

default:

printf("Consonant\n")

break;

}

52

The C standard library

 Every C implementation implements a large number of
common routines
 Load the declarations with an appropriate #include

 stdio.h: printf, scanf, fopen, fclose, fread, fwrite

 stdlib.h: malloc, exit, NULL, atoi, qsort

 math.h: sqrt, sin, pow

 string.h: strlen, strcpy, memcpy

 assert.h: assert

 ctype.h: isalpha, isspace

 Still limited compared to Java, C++, or Python
 Some interfaces have old/poor designs (e.g., gets)

 Lacking general-purpose data structures

 Other stuff also in a typical OS-specific C library / C runtime

53

The C preprocessor

 The first step of compiling C code is text-level processing
 Also available as a separate tool, cpp on Unix

 Preprocessor directives are lines that start with #

 #include reads in another file

 Typically a header (.h) file that contains declarations

 <> for system headers, "" for program headers

 #define creates a macro

 Synonym for a value that is substituted in later

 Simple uses similar to typedef or const variable

#define TABLE_SIZE 1000

int table[TABLE_SIZE];

54

Conditional compilation

 Use macros and simple arithmetic to decide what code to
use

 #if 0 / #endif can “comment-out” code containing
comments

#ifdef __i386__

typedef long long int64;

#elif defined(__amd64__)

typedef long int64;

#else

#error "No known 64-bit type"

#endif

55

Function-like macros

 Macros can also define simple computations

 Implemented by textual substitution

 A number of pitfalls to be aware of:
 Should have parentheses around outside, and each argument

 Multiple lines need \ continuation

 Variables can cause name clashes

 Multiple side-effects possible with ,

 Statement needs do { … } while (0)

 Often better to use a real function, compiler can inline

#define MAX(x, y) \

((x) > (y) ? (x) : (y))

