
1

1

C Language Basics

CSci 2021: Machine Architecture and Organization
September 7th-12th, 2018

Slides and Instructor: Stephen McCamant

3

A history of C in one slide

 First developed in the early 1970s for Unix

 Originally by Dennis Richie, descended from BCPL and B

 Made Unix one of the first OSes not written in assembly

 Defined in a book by Kernighan and Richie (K&R)

 Popularity grew with Unix, then for microcomputers

 Standardized by ANSI/ISO in 1989/1990

 Object-oriented variants appeared in the 1980s:
 Objective-C and C++

 Java in turn derives largely from C++, in the 1990s

 Further standards in 1999 (C99) and 2011 (C11)

4

C as compared with C++ and Java

 Unlike Java and C++, C does not have:

 Classes

 Packages/namespaces

 Templates/generics

 Exceptions

 Operator or function overloading

 Anonymous functions/closures/lambdas

 A rich standard data-structure library

 Unlike Java, C allows potentially-unsafe operations:
 Uninitialized variables and memory

 Out-of-bounds array accesses

 Creating pointers from integers

 Deallocating memory that is still in use

5

C programs are made up of functions

 The primary unit of structure is a function

 AKA “procedure”, “subroutine”

type func(type arg1, type arg2)

{

statements

}

type type typename arg arg

statements

int add(int arg1, int arg2)

{

return arg1 + arg2;

}

6

Hello world in detail

#include <stdio.h>

int main(int argc, char **argv) {

printf("Hello, world!\n");

return 0;

}

standard library function
to print a message command-line arguments

standard library function
declarations

7

Return values and prototypes

 Functions can return a value with a return statement

 No return value, or no arguments, are signified by the
keyword void

 To tell the compiler about a function without defining it,
use a write a function prototype:

 In a single file program, prototypes mostly not needed if
functions are defined lower-level first
 But, give stylistic freedom to change function order

int add(int arg1, int arg2);

2

8

 Integer types:

 “unsigned” variants cannot be negative

 Common floating point types:
 float: usually 32 bits

 double: usually 64 bits

Numeric types

Type name Common minimum size

char 8 bits

short 16 bits

int 32 bits

long 32 bits – for us, 64 bits

long long 64 bits

9

Characters

 char’s name comes from representing characters

 Actually three types:
 signed char, -128 to 127

 unsigned char, 0 to 255

 char, might be either signed or unsigned

 On almost all systems, values 0-127 represent ASCII
 US-standardized code for roman alphabet, numbers, symbols, etc.

 Wider variety of standards for meanings of 128-255
 Windows-1252, Latin-1: add accented letters and a few symbols

 UTF-8: multiple bytes represent >100,000 Unicode characters

 Escape sequences starting with \ for hard-to-type ones:

 E.g., '\n' for newline, '\0' for character zero

10

Declaration, initialization, assignment

 A new variable is introduced with a declaration:

 Optionally, give it a value by including an initialization:

 An assignment statement changes the value of an
already-declared variable:

int weight, height;

int score = 100;

score = score - 5;

11

Intermisssion: ChimeIn

 I’ll periodically break up lectures with opportunities for
you to think about the material and maybe talk with the
people sitting next to you

 To anonymously submit answers, we’ll use ChimeIn

 If you have a laptop with you, please go to:
http://chimein.cla.umn.edu/course/view/2021

 And answer today’s (non-CS) question

 (Can also supposedly set up to answer with a cell phone)

12

Type conversion and casts

 Values are automatically converted between numeric
types, sometimes with strange effects:

 The act of converting can be written explicitly as a cast
operation:

long x = 1000000;

char c = x;

/* c is now 64 */

long x = 1000000;

char c = (char)x;

/* c is now 64 */

13

Local, global, and static

 A variable defined inside a function (local) is usually:

 Created once per call to the function

 Visible only inside the function

 Variable can be declared outside any function, global:
 Exists during the whole program

 Visible in any (later) function

 If a local variable is declared with keyword static:

 One version for the whole execution

 Still visible only inside the function

 E.g., useful for counter function

3

14

Arithmetic operators

 C has the standard math operators:
 +, - (both unary and binary)

 *, multiplication

 /, integer or floating-point division

 %, integer division remainder

 Precedence rules define the default grouping
 E.g., 1 + 2 * 3 is 1 + (2 * 3) i.e. 7, not 9

 When in doubt, use parentheses
 Rules are mostly, but not always, what you’d expect

15

Assignment abbreviations

 Unary ++ and -- add or subtract 1, respectively

 E.g., c++ is short for c = c + 1

 Also called increment and decrement

 Putting a = after an operator makes an update operator
 E.g., c += 10 is short for c = c + 10

 You can string together multiple assignment left-hand
sides
 assignment_grade = course_grade = 0;

16

Comparisons and logic

 Numbers can be compared with the usual operators:
 <, >

 <=, >=mean ≤, ≥

 ==, !=mean =, ≠; note double equals

 Integers used for logic (no separate Boolean type):
 0 represents false

 any non-zero interpreted as true, produced as 1

 (C99 defines <stdbool.h>, hasn’t caught on)

 Logic operators:
 && for and, || for or, ! for not

 (d != 0) && (n / d < 10) is safe (“short-circuiting”)

17

Arrays in C

 Arrays are the key building block for large data structures

 C arrays have limited features, allowing for simple
compilation strategies

 Local and global arrays can only have fixed size

 At runtime, no way to ask how long an array is

 No bounds checking

 First index is always 0

 Implementation is just a sequence of adjacent values

 C arrays are closely related with C’s pointers

18

Array syntax

 Syntax is based on square brackets [] as a suffix

 On a type, inside brackets is the size

 On a value, inside brackets is the index
 Can appear on left or right side of assignment

 Note, 0-based means index always less than size

double point[3] = {1.0, 1.0, 0.0};

point[0] = -2.0;

double dist =

sqrt(point[0]*point[0] +

point[1]*point[1] +

point[2]*point[2]);

19

Multidimensional arrays

 Repeat sets of brackets for tables with more numeric
indexes

 E.g., chess board:

 Note, not commas

 Again, only usable when the dimensions are fixed

char board[8][8];

board[0][0] = 'r';

4

20

Pointer basics

 A pointer is a value that stores the location of another
value
 As we’ll later see in detail, it’s implemented as a memory address

 The type of a pointer variable keeps track of the type of
what it can point to
 E.g., pointer-to-char, pointer-to-int

 Type declaration syntax puts a * before the variable
name:

int num, *num_ptr;

21

Basic pointer operations

 & creates a pointer

 If x is an int variable, &x is an int pointer, pointing at x

 * gets what the pointer points to

 If ip is an int pointer, *ip is the int it points at

 Also called “following” or “dereferencing”

 Multiple levels are possible

int i = 5;

int *ip = &i;

int **ipp = &ip;

(**ipp)++;

/* i and **ipp are now 6 */

“Declaration
resembles

use”

22

Pointer arithmetic

 Adding an integer to a pointer advances it by that number
of objects

 If p is an int *, p + 1 is a pointer to the int next to it

 Type indicates how much to move

 Programmer’s responsibility to know there is an int there

 p[i] is equivalent to *(p + i)

 Thus, a pointer is roughly equivalent to an array of
unknown size

 Array converted into pointer in most places it appears
 E.g. in function argument type, int x[] and int *x are

equivalent

23

Strings are arrays of characters

 String length is unknown at compile time
 Thus, type is char *

 Length of string indicated by \0 character after contents

 “Null termination”

 Many C programs don’t cope well with \0 characters in their input

void caesar_string(char *s, int amt) {

int i;

for (i = 0; s[i] != '\0'; i++) {

s[i] = rotate(s[i], amt);

}

}

24

String constants

 Put text inside double quote marks: "string"

 Can also include escape sequences

 Usually put \n at end of lines to be printed

 Normally string constants are read-only
 Type is const char *

 Can be used to initialize a modifiable character array

char a[] = "hi!";

/* size 4, including \0 */

char a[3] = "hi!";

/* size 3, no \0 */

25

Basics of printf

 Standard library function for formatted output

 First argument, format string, may contain format
specifiers starting with %

 Generally, each corresponds to a later argument

 Most basic format specifiers:
 %d: signed int, printed in decimal

 %g: double, in scientific notation if needed

 %s: char *, interpreted as string

printf("One %s one is %d\n",

"plus", 1 + 1);

/* One plus one is 2 */

5

26

if and if-else statements

 Basic way to make decisions. if does either something,
or nothing:

 if-else does one thing if true, other if false

if (x % 2 == 0)

printf("x is even\n");

if (x % 2 == 0)

printf("x is even\n");

else

printf("x is odd\n");

27

Blocks and indentation

 Use curly braces to group multiple statements, e.g. inside
an if statement
 Without braces, only one statement inside if

 Can declare variables inside a block, not visible outside

 Safer to use braces than not: they make grouping clear,
like parentheses
 Example “dangling else” ambiguity: else after nested ifs

 It is conventional to use indentation to show nesting level
 But compiler completely ignores whitespace

 Many opinions and arguments about where to put braces relative
to indentation

28

while and for loops

 A while loop repeats a statement/block as many times
as a condition is true (can be 0 times)

 A for loop groups a while with two other statements,
commonly assignment and update of the same variable

while (x > 0) {

x--;

} /* x is now 0 or negative */

for (A; B; C) D;

/* is equivalent to: */

A;

while (B) { D; C }

29

Leaving in the middle of a loop

 A break statement jumps to the end of the innermost
enclosing loop

 A continue statement jumps to the next iteration of a
loop
 For a for loop, the increment part is executed

 A return statement ends the entire function

 There is also a goto statement, but don’t use it

 One arguable application: jumping out of an outer loop

30

Intermission: HA1 out today

 First hands-on assignment: write a spell checker in C

 Non-interactive, just prints incorrect words and
suggestions

 Implement your own separate-chaining hash table

 We will have covered all the C you need by Wednesday’s
lecture

 Assignment due Monday, September 24th by 11:55pm

 Discussion forum enabled on Moodle page

 Turn-in will be on Moodle too

31

Debugging and debuggers

 You have probably already had the experience of making
a mistake in a program

 Speaking roughly, “debugging” is the process:

 After you know that your code is wrong

 But before you know how it is wrong

 Some kinds of debugging that don’t need much tool
support:

 Code review

 Rubber duck debugging

 Printf debugging

6

32

Debugging in the development cycle

Add
functionality

Edit

Compile

Test

Debug

33

What is a debugger for?

 Not to fix your bugs for you, alas

 Computers aren’t that smart yet

 Instead, helps you examine your program’s execution in
more detail
 See what is happening if something is obviously wrong

 Walk through normal execution, to compare with your
expectations

 Standard practice is source-level debugging
 I.e., the debugger shows your program in terms of its source code

 For binaries, made possible by debugging information (enabled
with compiler option -g)

34

The GNU debugger GDB

 Standard command-line, source and binary-level
debugger on Linux

 Start up with gdb ./my_program

 Supply program arguments to the GDB run command

 Abbreviated just r

 Or, use gdb --args ./my_program arg1 arg2

 This mode doesn’t work for redirection (shell <, >)

 Today: using GDB as a source-level debugger

35

break, step, next, continue

 Normally, GDB will execute your program normally

 To get it to stop to let you look around, turn on a
breakpoint with the command break (b)

 Argument can be function name, file and line number, others

 When the breakpoint is reached, your program will stop
and you can give GDB commands

 Run the program for one line with step (s)
 Variant next (n) does not go into other functions

 To go back to full-speed execution, use continue (c)

36

print

 The most important command for examining program
state is print (p)

 The argument is a source-level (i.e., C) expression

 Some features to know about
 Can do arithmetic

 Can refer to any variable in scope

 Can call functions

 Can do assignments

 p/x prints in hexadecimal (other formats also available)

37

Crashes, interrupts, and backtrace

 GDB will automatically stop if the program runs into a
crash like a segfault (technically: a Unix signal)

 To stop in the middle of execution, type Ctrl-C

 Good for debugging infinite loops

 The command backtrace (bt) summarizes all the
currently executing functions
 Similar to what Java and Python print for an unhandled exception

7

38

Watchpoints

 A watchpoint is sort of like a breakpoint, but based on
data

 The command watch takes an argument like print

 A watchpoint stops execution when that value changes

 Useful for tracking down problems caused to pointers

 If you use a source-level expression, you’ll usually get a
software watchpoint, which is slow
 Later, we’ll see hardware watchpoints

39

Pass by value

 The parameters to a C function are always just copies of
values from the caller
 Called “pass by value”

 I.e., they are local variables; changing them has no effect
outside the function

int global;

void f(int a, int b) {

a++; /* does not change global */

b--; /* does not change 2 + 2 */

}

void g(void) { f(global, 2 + 2); }

40

Recursion

 A function can call itself, directly or indirectly

 Each instance has its own copy of local variables
 Used to implement algorithms like quicksort, parsing

 Can also be used as an alternative form of loop
 Not as common in C as in functional languages

 Each instance usually uses some memory
 Deep recursion is not too common in C

41

Simulating pass by reference

 What if you want a function to modify caller’s variables?

 Called “pass by reference”

 Simulated in C by passing explicit pointers

 Commonly used instead of multiple return values
 Pointer parameters classified as “in”, “out”, “in/out”

void increment_by(int *ip, int amt) {

*ip += amt;

}

void f(void) {

int x;

increment_by(&x, 5);

}

42

Structures

 Data type that groups multiple named values

 Fields accessed with the . operator

 Compared to OO languages, like objects but without
methods, inheritance, or visibility restrictions

struct student {

char *name;

int grade;

};

struct student jane;

jane.name = "Jane";

jane.grade = 100;

43

Pointers to structures

 In more complex situations, you often want to refer to
structs with pointers

 sp->f is short for (*sp).f

 Note for Java users: Java object (references) are like
structure pointers

 Even though pointer aspect is not explicit in syntax

 E.g., two variables can refer to the same object

 Despite the symbol, Java’s . is like C’s ->

void mark_off(struct student *sp) {

sp->grade += 10;

}

8

44

Allocating structures

 If structs are like objects, what’s the equivalent of new?

 Malloc is a basic routine for dynamically allocating
memory
 Argument is size in bytes

 Return value has type void *, automatically converted

 Contents can be anything, you must initialize

 For now, learn as an idiom; we’ll see more details later
 Use with arrays

 Changing size with realloc

 Returning memory with free (don’t need to do this in HA1)

struct student *sp =

malloc(sizeof(struct student));

45

Null pointers

 Pointers have a special value that means not pointing at
anything
 Often used to represent endpoints or empty data structures

 Integer 0 converted to pointer, also NULL macro

 On most systems, internal representation is 0

 A null pointer counts as false, any other pointer is true

 Dereferencing a null pointer usually causes a segfault
 So you need to check first

46

Pointer and sharing pitfalls

 Passing a pointer to data is usually faster than copying it

 Only one copy of data exists; it is shared by different users

 But, sharing can also lead to unexpected behavior

 E.g., data changing when you do not expect it to

 Pointer to a local variable is valid only until its function
finishes
 Attempts to access later may cause a crash

 Sometimes you do want to make a copy of data
 Allocate a new struct/array and copy contents over

 strdup is a convenience function for duplicating a null-
terminated string

47

Example: linked list length

 Can iterate over a singly-linked list with a for loop:

struct list_node {

struct list_node *next;

int value;

};

int length(struct list_node *root) {

struct list_node *p; int i = 0;

for (p = root; p; p = p->next)

i++;

return i;

}

48

Choose your own adventure

 Two choices for the rest of today’s lecture

 More GDB features, demo

 More C features

 Register your choice at:
http://chimein.cla.umn.edu/course/view/2021

49

A few more fun operators

 The “ternary” operator ?: is like an if-then-else

 The comma , evaluates two expressions and returns the
right-hand one
 Useful for putting multiple assignments in a for loop header

 ++ and -- can also be prefixes, and return a value
 Prefix versions like ++x first update, then return new value, “pre-

increment”

 Postfix versions like x++ update, but return old value, “post-
increment”

 Overusing these operators can make code hard to read

printf("Found %d object%s\n", n,

((n == 1) ? "" : "s"));

9

50

typedef

 Used to create a type name that is a synonym for another
type
 Syntax is like that of a variable declaration

 Commonly used to save typing “struct”:

typedef char zipcode[5];

zipcode umn = "55455";

typedef struct list_node node;

node table[100];

51

switch statement

 Used for making a choice based on several integer values

switch ('a' + (letter % 26)) {

case 'a': case 'e': case 'i':

case 'o': case 'u':

printf("Vowel\n");

break;

case 'y':

printf("Maybe y\n");

break;

default:

printf("Consonant\n")

break;

}

52

The C standard library

 Every C implementation implements a large number of
common routines
 Load the declarations with an appropriate #include

 stdio.h: printf, scanf, fopen, fclose, fread, fwrite

 stdlib.h: malloc, exit, NULL, atoi, qsort

 math.h: sqrt, sin, pow

 string.h: strlen, strcpy, memcpy

 assert.h: assert

 ctype.h: isalpha, isspace

 Still limited compared to Java, C++, or Python
 Some interfaces have old/poor designs (e.g., gets)

 Lacking general-purpose data structures

 Other stuff also in a typical OS-specific C library / C runtime

53

The C preprocessor

 The first step of compiling C code is text-level processing
 Also available as a separate tool, cpp on Unix

 Preprocessor directives are lines that start with #

 #include reads in another file

 Typically a header (.h) file that contains declarations

 <> for system headers, "" for program headers

 #define creates a macro

 Synonym for a value that is substituted in later

 Simple uses similar to typedef or const variable

#define TABLE_SIZE 1000

int table[TABLE_SIZE];

54

Conditional compilation

 Use macros and simple arithmetic to decide what code to
use

 #if 0 / #endif can “comment-out” code containing
comments

#ifdef __i386__

typedef long long int64;

#elif defined(__amd64__)

typedef long int64;

#else

#error "No known 64-bit type"

#endif

55

Function-like macros

 Macros can also define simple computations

 Implemented by textual substitution

 A number of pitfalls to be aware of:
 Should have parentheses around outside, and each argument

 Multiple lines need \ continuation

 Variables can cause name clashes

 Multiple side-effects possible with ,

 Statement needs do { … } while (0)

 Often better to use a real function, compiler can inline

#define MAX(x, y) \

((x) > (y) ? (x) : (y))

