Bits, Bytes, and Integers

CSci 2021: Machine Architecture and Organization September 14th-19th, 2018

Your instructor: Stephen McCamant

Based on slides originally by: Randy Bryant, Dave O'Hallaron

Today: Bits, Bytes, and Integers

Representing information as bits

- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

For example, can count in binary

- Base 2 Number Representation
 - Represent 15213₁₀ as 11101101101101₂
 - Represent 1.20₁₀ as 1.0011001100110011[0011]...2
 - Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

Encoding Byte Values

Byte = 8 bits

- Binary 000000002 to 11111112
- Decimal: 010 to 25510
- Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Aside: ASCII table

0x0 10 AA AB AC AD AE AF AG AH It In AK AL AM AN AO 0x1_ AP AQ AR AS AT AU AV A		0	1	2	3	4	5	6	7	8	9	a	b	с	d	е	f
0x1 n a n	0x0_	\0	^A	^B	^C	^D	^E	^F	^G	^H	\t	\n	^K	^L	^M	^N	^0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0x1_	^P	^Q	^R	^S	^T	^U	۸V	^W	^χ	۸γ	^Z	ESC	FS	GS	RS	US
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0x2_	SPC	!	•	#	\$	%	&	1	()	*	+	,	-		/
0x4_ @ A B C D E F G H I J K L M N O 0x5_ P Q R S T U V W X Y Z [\]] ^^<	0x3_	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
Dx5_ P Q R S T U V W X Y Z [] ^ _ Dx6_ `` a b c d e f g h l j k l m n o Dx7_ p q r s t v w x y z { l } o o	0x4_	@	А	В	С	D	Е	F	G	Н	1	J	Κ	L	М	Ν	0
0x6_`abcdefghlijklmnno 0x7_pqrstuvwxyz{ }~~	0x5_	Ρ	Q	R	S	Т	U	٧	W	Х	Y	Ζ	[١]	٨	_
0x7_pqrstuvwxyz{ }~	0x6_	•	а	b	с	d	е	f	g	h	1	j	k	1	m	n	0
	0x7_	р	q	r	s	t	u	v	w	х	у	z	{	1	}	~	DEL

Example Data Representations

char	1		
	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Boolean Algebra

 Develo Algeb Eno 	ped by George Boole raic representation of log code "True" as 1 and "Fals	e in 19th C ic se" as 0	Century
And (math	: ^)	Or (math	h:∨)
A&B = 1 with a second secon	nen both A=1 and B=1	• A B = 1 v	when either A=1 or B=1
& 0	1	1 0	0 1
0 0	0	0 0	0 1
1 0	1	1	1 1
Not (math	: ר) Exclu	sive-Or "x	or" (math: ⊕)
~A = 1 whe	n A=0 = A^B	= 1 when eit	ther A=1 or B=1, but not both
~		^ (0 1
0 1		0 0	0 1
1 0		1	1 0

Example: Representing & Manipulating Sets

Representation Width whit vector represents subsets of 10 w-13

•••		-preser	10 50 50 61 (0)	,,
• a _j :	=1ifj∈A			
	01101001 {	0, 3, 5,	6 }	
•	7 <mark>6543</mark> 210			
	01010101 {	0, 2, 4,	6}	
•	7 <mark>6543210</mark>			
Opera	ations			
• &	Intersection		01000001	{ 0, 6 }
• •	Union		01111101	{0, 2, 3, 4, 5, 6
• ^	Symmetric different	ence	00111100	{ 2, 3, 4, 5 }
• ~	Complement		10101010	{ 1, 3, 5, 7 }

Shift Operations

Left Shift: x << y</p>

- Shift bit-vector x left y positions - Throw away extra bits on left Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions Throw away extra bits on right
 - Logical shift: fill with 0's on left
 - Arithmetic shift: replicate most
 - significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ word size</p>
 - Signed shift into or out of sign bit (i.e., arith. behavior not assured)

Argument x

<< 3

Log. >> 2

Arith. >> 2

Argument x

<< 3

Log. >> 2

Arith. >> 2 11101000

01100010

00010*000*

00011000

00011000

10100010

00010*000*

*00*101000

Interlude: ChimeIn

https://chimein.cla.umn.edu/course/view/2021

- Which of the following numbers represented in hex is not a multiple of 4?
 - 0x2248730c
 - 0xf4d56f9e
 - 0x1c841a94
 - 0x0970bd90
 - 0xac3f6978

Claim

• w = 0:

1 = 2⁰

Υ

= 2^w

- Idea: it is enough to look at the last digit
 - Like divisibility by 10, 2 and 5 for decimal
 - 0x0, 0x4, 0x8, and 0xc = decimal 12 are multiples of 4
 - 0xe = 14 is even but not a multiple of 4

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
- Summary

Sign

Bit

Four-bit Examp	le	
Unsigned:	8 4 2 1 1 1 1 1 = 15 ₁₀	
Two's complement:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

			W	
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,61
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,80
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,80
Obs	ervatio	ons = TMax -	• C Pi	rogramming #include <limits.h></limits.h>
Obs	TMin • Asyn	ons = TMax - nmetric rang	+1 +1	r ogramming #include <limits.h> Declares constants, e.g.,</limits.h>
Obs	Frvation TMin Asyn Max	ons = TMax - mmetric rang = 2 * TM	C Pi Se C Pi Se C	rogramming #include <limits.h> Declares constants, e.g., ULONG MAX</limits.h>
Obs	Figure Asyn TMin Asyn Asyn	ons = TMax - mmetric rang = 2 * TM	C Pr +1 • 4 ge • 1 lax + 1	rogramming #include <limits.h> Declares constants, e.g., ULONG_MAX LONG_MAX</limits.h>
Obs	ervatio <i>TMin</i> • Asyn UMax	ons = TMax - nmetric rang = 2 * TM	C Pr t t t t t t t t t t t t t t t t t	rogramming #include <limits.h> Declares constants, e.g., ULONG_MAX LONG_MAX LONG MIN</limits.h>

Unsigned & Signed Numeric Values

X	B2U(X)	B2T(X)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

- Same encodings for nonnegative values
- Uniqueness
 - Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding
- ⇒ Can Invert Mappings
 - $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned
 - integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Mapping Between Signed & Unsigned

Unsigned

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspectiv

Relation between Signed & Unsigned Two's Complement Unsigned

Conversion Visualized

■ 2's Comp. → Unsigned UMax Ordering Inversion UMax – 1 - Negative → Big Positive TMax + 1Unsigned TMax • TMax Range 2's Complement 0 0 Range -1 _2 L TMin

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix
- **0U, 4294967259U**

Casting

- Explicit casting between signed & unsigned same as U2T and T2U
 - int tx, ty;
 - unsigned ux, uy; tx = (int) ux;
 - uy = (unsigned) ty;
- Implicit casting also occurs via assignments and procedure calls
 - tx = ux; uy = ty;

and O'Hallaron. Computer Systems: A Programmer's Perspective. Third Editi

Casting and Comparison Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

Constant ₁	Constant ₂	Relation	Evaluatio
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned

https://chimein.cla.umn.edu/course/view/2021

Casting and Comparison Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32: TMIN = -2.147.483.648. TMAX = 2.147.483.647

-			
Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Brief announcements

About 1 week left to go on HA1 Keep your questions coming, don't put it off

- My office hours tomorrow will move to 3-4pm
 - Still in 4-225E Keller

Summary

Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Typical Usage

/* Kernel memory region holding user-accessible data */ #define KSIZE 1024 char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;</pre>

#define MSIZE 528

void getstuff() { char mybuf[MSIZE]; copy_from_kernel(mybuf, MSIZE); printf("%s\n", mybuf); }

rvant and O'Hallaron. Computer Systems: A Programmer's Perspective. Third Editio

nt and O'Hallaron, Computer Systems: A Programmer's Persoantive Third Edition

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Sign Extension Task: Given w-bit signed integer x Convert it to w+k-bit integer with same value Rule: Make k copies of sign bit: • $X' = x_{w-1}, ..., x_{w-1}, x_{w-1}, x_{w-2}, ..., x_0$ k copies of MSB w XX' k ' w

Sign Extension Example

short	int x =	15213;	
int	ix =	(int) x;	
short	int y =	-15213;	
int	iy =	(int) y;	

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 1111111 11000100 10010011

Converting from smaller to larger integer data type

Cautomatically performs sign extension

Summary: Expanding, Truncating: Basic Rules

Expanding (e.g., short int to int)

- Unsigned: zeros added
- Signed: sign extension
- Both yield expected result

Truncating (e.g., unsigned to unsigned short)

- Unsigned/signed: bits are truncated
- Result reinterpreted
- Unsigned: mod operation
- Signed: similar to mod
- For small numbers yields expected behavior

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

Unsigned Addition

Operands: w bits	<i>u</i> •••				
True Sum: w+1 bits Discard Carry: w bits	$\begin{array}{c c} + v & & & \\ \hline \\ u + v & & & \\ \hline \\ u + v & & & \\ \hline \\ u + v & & & \\ \hline \\ u + v & & & \\ \hline \\ u + v & & & \\ \hline \\ u + v & & & \\ \hline \\ u + v & \\ u + v & \\ \hline \\ u + v & \\ \hline \\ u + v & \\ \\$				
Standard Addition Function Ignores carry output					
Implements Mo	dular Arithmetic				
$s = UAdd_w(u)$	$(v) = u + v \mod 2^w$				

Visualizing (Mathematical) Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum
- Add₄(*u*, *v*) Values increase linearly
- with u and v
- Forms planar surface

Visualizing Unsigned Addition

Mathematical Properties

- Modular Addition Forms an Abelian Group
 - Closed under addition $0 \leq UAdd_w(u, v) \leq 2^w - 1$
 - Commutative
 - $UAdd_w(u, v) = UAdd_w(v, u)$ Associative

 - $UAdd_w(t, UAdd_w(u, v)) = UAdd_w(UAdd_w(t, u), v)$ • 0 is additive identity
 - $UAdd_w(u, 0) = u$
 - Every element has additive inverse
 - Let $UComp_w(u) = 2^w u$ $UAdd_w(u, UComp_w(u)) = 0$

Two's Complement Addition

Operands: w bits	<i>u</i> ••• •
True Sum: w+1 bits Discard Carry: w bits	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
 TAdd and UAdd Signed vs. unsig int s, t, u, s = (int) ((t = u + v Will give s == 	have Identical Bit-Level Behavior ned addition in C: v; unsigned) u + (unsigned) v); t

TAdd Overflow

Functionality True Sum True sum requires w+1 0 111...1 2*w*–1 bits TAdd Result Drop off MSB **0** 100...0 2w-1-1 011...1 Treat remaining bits as 2's comp. integer **0** 000...0 0 000...0 1011...1 100...0 -2^{w-1} 1 000...0 NegOver -2w

Visualizing 2's Complement Addition

Mathematical Properties of TAdd Isomorphic Group to unsigneds with UAdd Functionality • $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$ Since both have identical bit patterns Two's Complement Under TAdd Forms a Group Closed, Commutative, Associative, 0 is additive identity Every element has additive inverse $TComp_w(u) = \begin{cases} -u & u \neq TMin_w \\ TMin_w & u = TMin_w \end{cases}$

Signed/Unsigned Overflow Differences

- Unsigned:
 - Overflow if carry out of last position
 - Also just called "carry" (C)
- Signed:
 - Result wrong if input signs are the same but output sign is different
 - In CPUs, unqualified "overflow" usually means signed (O or V)

Sign bit table, signed ordering

Sign bit table, unsigned ordering

Negation: Complement & Increment

- Claim: Following Holds for 2's Complement ~x + 1 == -x
- Complement
 - Observation: ~x + x == 1111...111 == -1
 - x 10011101
 - + ~x 01100010
 - -1 11111111

Complement & Increment Examples

x = 15213

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
~x	-15214	C4 92	11000100 10010010
~x+1	-15213	C4 93	11000100 10010011
У	-15213	C4 93	11000100 10010011

x = 0

	Decimal	Hex	Binary
0	0	00 00	0000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	0000000 00000000

Multiplication Goal: Computing Product of w-bit numbers x, y Either signed or unsigned But, exact results can be bigger than w bits Unsigned: up to 2w bits Result range: 0 ≤ x * y ≤ (2^w - 1)² = 2^{2w} - 2^{w+1} + 1 Two's complement min (negative): Up to 2w-1 bits Result range: x * y ≥ (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1} Two's complement max (positive): Up to 2w bits, but only for (*TMin_w*)² Result range: x * y ≤ (-2^{w-1})² = 2^{2w-2} Son maintaining exact results... would need to keep expanding word size with each product computed is done in software, if needed e.g., by "arbitrary precision" arithmetic packages

ar'r Parre

Unsigned Multiplication in C

Signed Multiplication in C

Operands: w bits	u * v	•••	
True Product: 2^*w bits $u \cdot v$	•••	•••	
Discard w bits: w bits	$\operatorname{Mult}_{w}(u, v)$	•••	
 Standard Multiplication Funct Ignores high order w bits Some of which are different for s vs. unsigned multiplication Lower bits are the same 	ion igned		

Code Security Example #2

SUN XDR library

Widely used library for transferring data between machines

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);

XDR Vulnerability Power-of-2 Multiply with Shift malloc(ele_cnt * ele_size) Operation u << k gives u * 2^k What if: k Both signed and unsigned *u* ••• · · · · $= 2^{20} + 1$ ele_cnt Operands: w bits = 2¹² ele_size = 4096 * 2^k 0 ••• 0 1 0 ••• 0 0 Allocation = ?? True Product: w+k bits $u \cdot 2^k$ Chime in: <u>https://chimein.cla.umn.edu/course/view/2021</u> UMult_w $(u, 2^k)$ ••• 0 0 Discard k bits: w bits (Question 16257) $\mathrm{TMult}_w(u, 2^k)$ $(2^{20} + 1) \cdot 2^{12} = 2^{20} \cdot 2^{12} + 2^{12} = 2^{32} + 2^{12} \equiv 2^{12}$ Examples • u << 3 == u * 8 • (u << 5) - (u << 3)== u * 24 How can I make this function secure? Most machines shift and add faster than multiply

Compiled Multiplication Code

ing marre (rong in)	
return x*12;	
Compiled Arithmetic Operations	Explanation
salq (%rax,%rax,2), %rax	$t \le x + x * 2$

Background: Rounding in Math

- How to round to the nearest integer?
- Cannot have both:
 - round(x + k) = round(x) + k (k integer), "translation invariance" round(-x) = -round(x) "negation invariance"
- L x J, read "floor": always round down (to -∞): ■ [2.0]=2, [1.7]=1, [-2.2]=-3
- [x], read "ceiling": always round up (to +∞):
- [2.0] = 2, [1.7] = 2, [-2.2] = -2C integer operators mostly use round to zero, which is like
- floor for positive and ceiling for negative

Division in C

- Integer division /: rounds towards 0 Choice (settled in C99) is historical, via FORTRAN and most CPUs
- Division by zero: undefined, usually fatal
- Unsigned division: no overflow possible
- Signed division: overflow almost impossible
 - Exception: TMin/-1 is un-representable, and so undefined
 - On x86 this too is a default-fatal exception

Undefined behavior

- Many things you should not do are officially called "undefined" by the C language standard
 - Meaning: compiler can do anything it wants
- Examples:
 - Accessing beyond the ends of an array
 - Dividing by zero Things you do in this Overflow in signed operations section of the course! Shifts of negative values
- Bad interaction with improving compiler optimizers
- Gap between standard and lenient practical compilers not vet resolved

Quotient of Unsigned by Power of 2 u >> k gives [u / 2^k] Uses logical shift Binary Point

Unsigned Power-of-2 Divide with Shift

0	perands	: /	2 ^k 0 ••	• 010	••• 1010 /	
D	ivision:	u	/ 2 ^k 0 ••	• 0 0		
R	esult:	[<i>u</i> /	2 ^k 0 ••	• 0 0	••••	
Γ		Division	Computed	Hex	Binary	
Ī	x	15213	15213	3B 6D	00111011 01101101	
ſ	x >> 1	7606.5	7606	1D B6	00011101 10110110	
ſ	x >> 4	950.8125	950	03 B6	00000011 10110110	
ľ	x >> 8	59.4257813	59	00 3B	00000000 00111011	

Compiled Unsigned Division Code C Function unsigned long udiv8 (unsigned long x) ł return x/8; **Compiled Arithmetic Operations** Explanation shrq \$3, %rax # Logical shift return x >> 3; Uses logical shift for unsigned For Java Users Logical shift written as >>>

Signed	Power-	of-2 Div	vide w	ith Shift
 Quotien x >> Uses a 	t of Signed k gives L x arithmetic shif	by Power o / 2 ^k] t	f 2	
Round	is wrong direc	tion when u	< 0	
Operands:	1	x 2 ^k 0 ••	• 0 1 0	Binary Point
Division:	x	/ 2 ^k	•	····] ····]
Result: RoundDown $(x/2^k)$				
	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	11100010 01001001
y >> 4	-950.8125	-951	FC 49	11111100 01001001
у >> 8	-59.4257813	-60	FF C4	11111111 11000100

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective. Third Edition

Correct Power-of-2 Divide Quotient of Negative Number by Power of 2 Want x / 2^k (Round Toward 0) Compute as (x+2^k-1) / 2^k • In C: (x + (1<<k)-1) >> k Biases dividend toward 0 Case 1: No rounding u 1 ••• 0 ••• 00 Dividend: $+2^{k}-1$ 0 ••• 0 0 1 ••• 1 1 1 ••• 1 ••• 11 **Binary Point** 1 2^k 0 ••• 0 1 0 ••• 0 0 Divisor: $\begin{bmatrix} u/2^k \end{bmatrix}$ **1 ••• 111** ••• **11** Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Compiled Signed Division Code

Remainder operator

- Written as % in C
- **x** % y is the remainder after division x / y
- E.g., x % 10 is the lowest digit of non-negative x
- Behavior for negative values matches /'s rounding toward zero

• b*(a / b) + (a % b) = a

- I.e. sign of remainder matches sign of dividend
- (Some other languages have other conventions: sign of result equals sign of divisor, sometimes distinguished as "modulo", or always positive)

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncatingAddition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Arithmetic: Basic Rules

Addition:

Unsigned/signed: Normal addition followed by truncate,

- same operation on bit level Unsigned: addition mod 2^w
- Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
- Mathematical addition mod 2 (result in proper range)
 Mathematical addition + possible addition or subtraction of 2^w
- Multiplication:
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication mod 2^w
 - Signed: modified multiplication mod 2^w (result in proper range)

Arithmetic: Basic Rules

 Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting

Left shift

- Unsigned/signed: multiplication by 2^k
- Always logical shift

Right shift

- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by $2^{\rm k}$ Use biasing to fix

Properties of Unsigned Arithmetic

- Unsigned Multiplication with Addition Forms Commutative Ring
 - Addition is commutative groupClosed under multiplication
 - $0 \le UMult_w(u, v) \le 2^w 1$ Multiplication Commutative
 - UMult_w(u, v) = UMult_w(v, u) Multiplication is Associative
 - UMult_w(t, UMult_w(u , v)) = UMult_w(UMult_w(t, u), v)
 1 is multiplicative identity
 - $UMult_w(u, 1) = u$
 - Multiplication distributes over addition
 UMult_w(t, UAdd_w(u, v)) = UAdd_w(UMult_w(t, u), UMult_w(t, v))

Properties of Two's Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
- Truncating to w bits
 Two's complement multiplication and addition
 Truncating to w bits
- Both Form Rings
 - Isomorphic to ring of integers mod 2^w
- Comparison to (Mathematical) Integer Arithmetic
 Both are rings
 - Integers obey ordering properties, e.g.,
 - $u > 0 \qquad \Rightarrow u + v > v$
 - $u > 0, v > 0 \implies u \cdot v > 0$
 - These properties are not obeyed by two's comp. arithmetic
 TMax + 1 == TMin

(16-bit words)

15213 * 30426 == -10030

Why Should I Use Unsigned?

Don't use without understanding implications

```
Easy to make mistakes
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
    a[i] += a[i+1];
```

```
Can be very subtle
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
. . .
```


Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
 Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Byte-Oriented Memory Organization

Programs refer to data by address

- Conceptually, envision it as a very large array of bytes
 In reality, it's not, but can think of it that way
- An address is like an index into that array
 - and, a pointer variable stores an address

Note: system provides private address spaces to each "process"

- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others

ryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of integer-valued data
 - and of addresses
- Until recently, most machines used 32 bits (4 bytes) as word size
 Limits addresses to 4GB (2³² bytes)
- Increasingly, machines have 64-bit word size
 Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 10¹⁸
- Machines still support multiple data formats
- Fractions or multiples of word size
 Always integral number of bytes

- Always integral number of byte

Locations)))1
)1
Address of first byte in word	
Addresses of successive words differ	12
by 4 (32-bit) or 8 (64-bit)	3
)4
)5
0004 000	6
)7
)8
	9
0008 Addr 001	.0
	.1
Addr 001	.2
	.3
0012 001	.4
Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition	. 5

Word-Oriented Memory Organization

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Windows
 - · Least significant byte has lowest address

Byte Ordering Example

Example

- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

Examining Data Representations

Code to Print Byte Representation of Data

Representing Strings

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
- Digit i has code 0x30+i String should be null-terminated
 - Final character = 0
- Compatibility
- Byte ordering not an issue

14	32		Sun
	31	••	31
	38	••	38
	32	← →	32
	31	← →	31
	33	••	33
	00	← →	00

char S[6] = "18213";

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
 - Generated by program that reads the machine code

Example Fragment

Address	Instruction Code	Assem	bly Rendition
8048365:	5b	pop	%ebx
8048366:	81 c3 ab 12 00 00	add	<pre>\$0x12ab,%ebx</pre>
804836c:	83 bb 28 00 00 00 00	cmpl	\$0x0,0x28(%ebx)
DecipherValue:	ing Numbers	0x1	2ab
Pad to 32	bits:	0x00001	2ab
	hytory	00.00.1	2 ah
 Split into 	Dytes.	00 00 1	2 00

Integer C Puzzles

1. x < 0	\Rightarrow ((x*2) < 0)
2. ux > -1	
3. x > 0 && y >	$0 \Rightarrow x + y > 0$
4. (x -x)>>31 ==	-1

	• x < 0	⇒ ((x*2) < 0)
	• ux >= 0	
	• x & 7 == 7	⇒ (x<<30) < 0
	• ux > -1	
	• x > y	⇒ -х < -у
	• x * x >= 0	
Initialization	• x > 0 && y > 0	\Rightarrow x + y > 0
	• x >= 0	$\Rightarrow -x \ll 0$
int x = foo();	• x <= 0	$\Rightarrow -x \ge 0$
<pre>int y = bar();</pre>	• (x -x)>>31 == -1	
unsigned ux = x;	• ux >> 3 == ux/8	
unsigned $uv = v;$	• x >> 3 == x/8	
, - <u>1</u> 1/	• x & (x-1) != 0	

Bonus: More Integer C Puzzles

int x = foo();int y = bar(); unsigned ux = x;unsigned uy = y;

Initialization

https://chimein.cla.umn.edu/course/view/2021