Bits, Bytes, and Integers

CSci 2021: Machine Architecture and Organization
September 14th-19th, 2018

Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O’Hallaron

v L C o , Third Edition

Everything is bits

m EachbitisOor1l
m By encoding/interpreting sets of bits in various ways
= Computers determine what to do (instructions)
= .. and represent and manipulate numbers, sets, strings, etc...
m Why bits? Electronic Implementation
= Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

0 | 1 | 0o~

11V —
0.9v —

0.2V —
0.0v —

yan « Third dit

Encoding Byte Values

Today: Bits, Bytes, and Integers

m Representing information as bits
[|
[|

s Perspective, Third Edition

For example, can count in binary

= Base 2 Number Representation
® Represent 15213,,as 11101101101101,
" Represent 1.20,,as 1.0011001100110011[0011]...,
= Represent 1.5213 X 10* as 1.1101101101101, X 23

A P
m Byte = 8 bits \?9+ ceo\‘:;\o’b
= Binary 000000002 to 111111112 0 10 10000
® Decimal: 010 to 25510 333
® Hexadecimal 0016 to FFis 011
= Base 16 number representation gg
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 10
= Write FA1D37B16 in C as éé
— OxFA1D37B 01
A 0 10
— Oxfald37b B 011
[¢] 00
D 01
E 10
F 5 11

Bryantar c s P Third Edit

antand O’ s Perspective, Third Edition

Aside: ASCII table

Lo 1t J2 3 14 |5 16 17 8 19 Ja b o d le [f
0x0o_ 0 “A "B AC D " " G "H t W K L M N "0
OxI_ AP AQ AR AS AT AU AV AW AX Ay Az ESC FS G5 RS US

. Pl # 0§ % & ' () * o+ - |
0x3. 0 1 2 3 4 5 6 7 8 9 ; < = > 7
x& @ A B C D E F G H I J K L M N O
x5 P Q R S T UV WX Y Z [\] * _
0x6_ a b ¢ d e f g h | |j k | m n o
X7 p g r s t u v w x y z { | } =~ ™

Example Data Representations

char

short 2 2
int 4 4
long 4 8
float 4 4
double 8 8
long double - -
pointer 4 8

, Third Edition

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0
And (math: A) Or (math: V)
= A&B = 1 when both A=1 and B=1

&f0 1 o1
oo o oo 1
1]0 1 111 1

Not (math: 1)
= “A =1 when A=0

=~ Mo
o1 oo 1
1|o 11 o

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example: Representing & Manipulating Sets

m Representation

= Width w bit vector represents subsets of {0, ..., w—1}

[|
C Data Type Typical 32-bit | Typical 64-bit x86-64
1 1 1

= A|B = 1 when either A=1 or B=1

Today: Bits, Bytes, and Integers

m Bit-level manipulations

o pective, Third Edition 8

General Boolean Algebras

m Operate on bit vectors

= Qperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101
01000001 01111101 00111100 10101010

m All of the properties of Boolean algebra apply

Exclusive-Or “xor” (math: @)
= A”B = 1 when either A=1 or B=1, but not both

9 Comp B pective, Third Edition 10

Bit-Level Operations in C

m Operations &, |, ~, " Available in C
= Apply to any “integral” data type

" a=1 ifj EA = long, int, short, char, unsigned
= View arguments as bit vectors
= 01101001 {0,3,5,6} = Arguments applied bit-wise
= 76543210 m Examples (Char data type)
= ~0x41 — OXBE
= 01010101 {0,2,4,6} = ~010000012 — 101111102
= 76543210 = ~0x00 — OxFF
= Operations = ~000000002 — 111111112
= 0x69 & 0x55 — Ox41
© & e OATEEA (0,6} - 011010012 & 010101012 — 010000012
= | Union 01111101 {0,2,3,4,56} * 0x69 | 0x55 — OX7D
= A Symmetric difference 00111100 {2,3,4,5} = 011010012 | 01010101, — 011111012
= ~ Complement 10101010 {1,3,57}

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

grammer's Perspective, Third Edition 2

Contrast: Logic Operations in C

m Contrast to Logical Operators

Watch out for && vs. & (and || vs. |)...

m Exampl B
. s | One of the more common oopsies in
= 10x00-| C programming

0x69 || 0x55 — 0x01

p &&*p (avoids null pointer access)

v , Comp er pective, Third Edition 3

Interlude: Chimeln

https://chimein.cla.umn.edu/course/view/2021
m Which of the following numbers represented in hex is not
a multiple of 4?
= 0x2248730c
" 0xf4d56f9%e
" 0x1lc841a9%4
= 0x0970bd90
= 0xac3£6978
m Idea: it is enough to look at the last digit
= Like divisibility by 10, 2 and 5 for decimal
= 0x0, 0x4, 0x8, and 0xc = decimal 12 are multiples of 4
® Oxe =14 is even but not a multiple of 4

Binary Number Property

Claim
1+1+2+4+8+..+2wl=2w
w61 .
1+a2" = 2"
i=0
m w=0:
= 1=20

m Assume true for w-1:
" 1+1+42+4+8+..+2%142W = 2Wiw = QwH

= 2w

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 2

Shift Operations

m Left Shift: x << y [Argument x| 01100010
= Shift bit-vector x left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right
= Right Shift: x >> y
= Shift bit-vector x right y positions
= Throw away extra bits on right Argument x| 10100010
= |ogical shift: fill with 0’s on left << 3 00010000

= Arithmetic shift: replicate most
significant bit on left

Log.>> 2 | 00011000

Arith. >> 2| 00011000

Log.>> 2 | 00101000

Arith. >> 2| 11101000

m Undefined Behavior
= Shift amount < 0 or > word size

= Signed shift into or out of sign bit (i.e., arith. behavior not assured)

o pective, Third Edition "

Today: Bits, Bytes, and Integers

[]
[]
m Integers
= Representation: unsigned and signed
.
.
.
.
[]
u

 Comp z pective, Third Edition 2

Encoding Integers

Unsigned Two’s Complement
w-1 w=2
BRUX) = Y x-2' BT(X) = —x,,2""+ Y20
i=0 i=0
short int x = 15213;
short int y = -15213; Sign
Bit
m Cshort 2 bytes long
Decimal Hex Binary
x 15213| 3B 6D| 00111011 01101101
y -15213| C4 93| 11000100 10010011

= Sign Bit
= For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative

c grammer's Perspective, Third Edition 2

Four-bit Example, unsigned

Unsigned:

= 0
=5
=N
[QI RN

=15,,

This approach can represent 0 through 15

Four-bit Example, two’s complement

Two’s complement: 1
I
-8

A

11=-1,,
1
1

l
2

This approach can represent -8 through 7

Encoding Integers

Unsigned Two’s Complement
wol w2
BUWX) = Yx-2' BT(X) = —x,,-2" "+ 3 x 2
i=0 i=0
short int x = 15213;
short int y = -15213; Sign
Bit
m Cshort 2 bytes long
Decimal Hex Binary
x 15213| 3B 6D| 00111011 01101101
y -15213| C4 93| 11000100 10010011

m Sign Bit
= For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition b

Four-bit Example, sign + magnitude

Sign + magnitude

ages: special cases, -Q

Four-bit Example

Unsigned:

= 00
|
=
9]
[y
(5)

Two’s complement:

R m—p
N RN
(e =
I
1
=
=
o

1
w —_—

Two-complement Encoding Example (Cont.)

x = 15213: 00111011 01101101

y = -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1

2] 0 0| 1 2]

4 1 4 0 0l

8| 1 8| 0 0l

16 0 0| 1 16|

32 1 32 0 0l

64 1 64 0 0l

128 0 0 1 128

256 1 256 0 0l

512 1 512 0 0l

1024] 0 0| 1 1024

2048 1 2048 0 0l

4096 1 4096 0 0l

8192 1 8192 0 0l

16384 0 0| 1 16384}

-32768] 0 0l 1 32768

Bryantand O'Hallaron, Computer ystems: A PR RAmer's erspective, Third EGRA2 13 -15213

Numeric Ranges

m Unsigned Values = Two’s Complement Values

Sl e = TMin = -t
000...0 100..0
L] = w_
e 2Rt = TMax = 2wi-1
il 011..1
m Other Values
= Minus 1
BISTE]
Values for W =16
Decimal Hex Binary
UMax 65535 FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 00000000
=il -1 FF FF| 11111111 11111111
0 0 00 00| 00000000 00000000

v , Comp er pective, Third Edition 2

Unsigned & Signed Numeric Values

X B2U(X) | B2T(X) m Equivalence
0000 0 0 = Same encodings for nonnegative
0001 1 1 values
0010 2 2 .

]
0011 3 5 Uniqueness
0100 2 2 = Every bit pattern represents
0101 5 5 unique integer value
0110 6 6 = Each representable integer has
0111 7 7 unique bit encoding
1000 8 -8 m = Can Invert Mappings
1001 9 =7
0 = 1

To10 m pr: U2B(x) = B2U"(x)
1011 11 5 = Bit pattern for unsigned
1100 12 —4 integer
1101 13 -3 = T2B(x) = B2T(x)
1110 14 2 = Bit pattern for two’s comp
1111 15 -1 integer

v .G e pective, Third Edition 3

Mapping Between Signed & Unsigned

Two’s Complement Unsigned
X — ux
Maintain Same Bit Pattern
Unsigned u2T Two’s Complement
ux —»7-——» X

Maintain Same Bit Pattern

m Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 3

Values for Different Word Sizes

w

8 16 32

64

UMax 255 65,535

4,294,967,295

18,446,744,073,709,551,615

TMax 127 32,767

2,147,483,647

9,223,372,036,854,775,807

TMin | -128 -32,768

-2,147,483,648

-9,223,372,036,854,775,808

m Observations

= |TMin| = TMax+1
= Asymmetric range
" UMax = 2*TMax+1

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

m CProgramming
= #include <limits.h>
= Declares constants, e.g.,
® ULONG_MAX
® LONG_MAX
= LONG_MIN
= Values platform specific

Today: Bits, Bytes, and Integers

[]
[]
m Integers
.
= Conversion, casting
.
.
.
[]

 Comp B pective, Third Edition

Mapping Signed < Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 20— 5
0110 6 6
0111 7 [uaT]— 7
1000 -8 8
1001 =7 9
1010 -6 10
1011 -5 11
1100 -1 12
1101 -3 13
1110 =3 14
1111 -1 15

c gramm pective, Third Edition

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 — 3
0100 1 4> 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 +/- 16» 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

v , Comp er pective, Third Edition £

Conversion Visualized

m 2’s Comp. — Unsigned
= Ordering Inversion UMax L
= Negative —> Big Positive UMax —

TMax +1 | unsigned

[TMax TMax Range
2’s Complement 0 0
Range 1 -
-2
L TMin

v .G e pective, Third Edition »

Casting and Comparison Surprises

m Expression Evaluation
= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned
®= Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX =2,147,483,647

m Constant, Constant, Relation Evaluation
0 ou == unsigned
-1 0 < signed
-1 ou > unsigned

https://chimein.cla.umn.edu/course/view/2021

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition “

Relation between Signed & Unsigned

Two’s Complement = Unsigned

—'7——' ux

X

Maintain Same Bit Pattern

0
[eee T+[+[4]
X [JH[+] eee [+[+[4]

I

Large negative weight
becomes
Large positive weight

o pective, Third Edition 3

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers
= Unsigned if have “U” as suffix
0U, 4294967259U

m Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

= Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;

 Comp z pective, Third Edition)

Casting and Comparison Surprises

m Expression Evaluation
= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned
® Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX =2,147,483,647

m Constant, Constant, Relation Evaluation
0 ou == unsigned
-1 0 < signed
-1 ou > unsigned
2147483647 -2147483647-1 > signed
2147483647V -2147483647-1 < unsigned
=il -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648V < unsigned
2147483647 (int) 2147483648V > signed

grammer's Perspective, Third Edition]

Brief announcements Summary
o e Casting Signed ¢ Unsigned: Basic Rules

= Keep your questions coming, don’t put it off = Bit pattern is maintained
m My office hours tomorrow will move to 3-4pm
= Still in 4-225E Keller

m But reinterpreted
m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
" intiscasttounsigned!!

v , Comp e pective, Third Edition a2

P pective, Third Edition

. . e /* Declaration of library function memcpy */
Typical Usage Malicious USQEE voia memcey (vota saset, voia vare, atsort m;
typedef unsigned long size_t;
/* Kernel memory region holding user-accessible data */ /* Kernel memory region holding user-accessible data */
#define KSIZE 1024 #define KSIZE 1024
char kbuf [KSIZE]; char kbuf[KSIZE];
/* Copy at most maxlen bytes from kernel region to user buffer */ /* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from kernel (void *user_dest, int maxlen) { int copy_from kernel (void *user_dest, int maxlen) {
/* Byte count len is minimum of buffer size and maxlen */ /* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen; int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy (user_dest, kbuf, len); memcpy (user_dest, kbuf, len);
return len; return len;
} }
#define MSIZE 528 #define MSIZE 528
void getstuff() { void getstuff() {
char mybuf [MSIZE]; char mybuf [MSIZE];
copy_from kernel (mybuf, MSIZE); copy_from kernel (mybuf, -MSIZE);
printf (“$s\n”, mybuf); AR
} }
Bryantand O'Hallaron, Computer Systems: A Programmer's Perspecive, Third Edition s , Compy & pective, Third Edition
Today: Bits, Bytes, and Integers Sign Extension
m Task:
u
= Given w-bit signed integer x
u a . B
= Convert it to w+k-bit integer with same value
m Integers
8! m Rule:
.
= Make k copies of sign bit:
.
. . = X=Xyt s Xt s Xwe10 Xz 100 Xo
® Expanding, truncating
—
.
i —y —
k copies of MSB w
.
x O TT
u
X' ST e TT17
—

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition a c

.. ctive, Third Edition

Sign Extension Example

Summary:
short int x = 15213; Expanding, Truncating: Basic Rules
int ix = (int) x;
short int y = -15213; . . .
int iy = (int) y; m Expanding (e.g., short int to int)
= Unsigned: zeros added
Decimal Hex Bivesy = Signed: sign extension
x 15213 3B 6D 00111011 01101101 = Both yield expected result
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 c4 93 11000100 10010011 X X .
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011 = Truncating (e.g., unsigned to unsigned short)

Unsigned/signed: bits are truncated
Result reinterpreted

Unsigned: mod operation

Signed: similar to mod

m Converting from smaller to larger integer data type
m C automatically performs sign extension

For small numbers yields expected behavior

v .G og pective Tird Edition © . pective, Third Edition

Today: Bits, Bytes, and Integers Unsigned Addition

™ Operands: w bits u [TTT =+ TTT]

u +v e T 111

m Integers UCCETECGELIS utrvITTT «ee TTT]
" Discard Carry: wbits ~ UAdd (u,v) [T11 «e¢ TT11]

= Standard Addition Function

= Addition, negation, multiplication, shifting I tout
® |Ignores carry outpu

[] . .
= Implements Modular Arithmetic
" s = UAdd,(u,v) = u+v mod2¥
Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51 gramm e . Third Edition
Visualizing (Mathematical) Integer Addition Visualizing Unsigned Addition
u Integer Addition Add,(u, v) m Wraps Around Overflow
®= 4-bit integers u, v Integer Addiion = [ftrue sum > 2% \
= Compute true sum = At most once UAdd,(u, v)
Add,(u, v)
= Values increase linearly
with uand v
True Sum
= Forms planar surface wl
Overflow
pAd __ :I:
0
Modular Sum

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 5 c grammer's Perspective, Third Edition

Mathematical Properties

m Modular Addition Forms an Abelian Group

® Closed under addition

0 <UAdd,(u,v) <2¥-1
®* Commutative

UAdd,(u,v) = UAdd,(v, u)
" Associative

UAdd,(t, UAdd,,(u, v)) = UAdd,(UAdd,(t, u), v)
= 0is additive identity

UAdd,(u,0) = u
® Every element has additive inverse

= Let UComp,, (u) =2¥-u

UAdd,,(u, UComp,, (u)) = 0

v G er pective, Third Edition

TAdd Overflow

m Functionality True Sum
= True sum requires w+1 O w1
bits 0%’ TAdd Result
= Drop off MSB 0100.0 pw-1g 011..1
= Treat remaining bits as
2’s comp. integer 0000..0 0 000..0
LSS —w-1 100..0
1000..0 _ow L NegOver

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Mathematical Properties of TAdd

m Isomorphic Group to unsigneds with UAdd
= TAdd,(u,v) = U2T(UAdd,,(T2U(u), T2U(v)))
= Since both have identical bit patterns

m Two’s Complement Under TAdd Forms a Group
= Closed, Commutative, Associative, 0 is additive identity
= Every element has additive inverse

—u u# TMin,,

TComp,,) = {Tme u=TMin,,

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Two’s Complement Addition

Operands: w bits u OTT - TT1T1
+ y [TTT ««+ TTT]
utv OTTT e TTT]

Discard Carry: w bits TAdd, (u,v) [T 11T e TT1T11

True Sum: w+1 bits

= TAdd and UAdd have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C:
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Willgive s == t

P pective, Third Edition

Visualizing 2’s Complement Addition

NegOver
m Values \
= 4-bit two’s comp.
= Range from -8 to +7
= Wraps Around

= If sum>2w?

TAdd,(u, v)

= Becomes negative
= At most once
= If sum<—2w1

= Becomes positive

bbb oON e O ®

= At most once

u 6 PosOver

z pective, Third Edition

Positive Overflow

Characterizing TAdd TAdd(u,v) |
>0 y
m Functionality v< 0
® True sum requires w+1 bits A
= Drop off MSB /<0u>0
® Treat remaining bits as 2’s Negative Overflow
comp. integer TAdd(u, v)
Sign Bit Set >0
\')
<
< Ou >0

Ju+ v+ 2W u+v<TMin,, (NegOver)
u+v TMin,, <u+v < TMax,,

{u +v— 2% TMax, <u+V (posover)

TAdd,,(u,v) =

grammer's Perspective, Third Edition

Signed/Unsigned Overflow Differences Sign bit table, signed ordering

N O O N N OO EN O O
1 2 3 e

UAdd(u, v) Carry Out

= Unsigned:) 7
= Overflow if carry out of last y
position v TAdd(u, v) -2 -1 0 1 2 3 -4 -3
= Also just called “carry” (C)
a <0 3 2 1 0 1 2 3 4
= Signed: u v
= Result wrong if input signs are >0 4 3 2 1 0 1 2 3
the same but output sign is >0 0 3 4 3 P i 0 1 2
different u
= |n CPUs, unqualified TAdd(u, v) Negative Overflow Sign Bit Set 2 3 T EREEE. o 1
“overflow” usually means <0
signed (O or V) v 1 2 3 4 -3 -2 1 0
>0 0 1 2 QR
>0 <0
Positive Overflow
61
Sign bit table, unsigned ordering Negation: Complement & Increment

3 m Claim: Following Holds for 2’s Complement
N O N O O E EN e
-1 0 1 2 8 4 3 2

m Complement

1 0 1 2 3 -4 -3 ® QObservation: ~x + x == 1111..111 == -1
2 0 1 2 3 A x [1]o[o[a]1[1]o[1]
B (1 2 3 + ~x [o[a]1]o[o[of1]0]
s Bl | | R -1

(] , Comp. B pective, Third Edition

Complement & Increment Examples Multiplication
x=15213 m Goal: Computing Product of w-bit numbers x, y
Decimal [Hex Binary = Either signed or unsigned
x 15213| 3B 6D| 00111011 01101101 9 9
= —Ie>141 Ca 52| 11000100 10010010 m But, exact results can be bigger than w bits
~x+1 | -15213| C4 93| 11000100 10010011 = Unsigned: up to 2w bits
y -15213| €4 93 11000100 10010011 = Resultrange: 0<x*y<(2¥—1)2 = 22w—2wl 41

= Two’s complement min (negative): Up to 2w-1 bits
Xx=0 = Resultrange: x * y > (-2%-1)*(2w-1-1) = —22w-24 w1
= Two’s complement max (positive): Up to 2w bits, but only for (TMin,,)?

Decimal Hex Binary . 2 2
0 0] 00 00[00000000 00000000 * Resultrange: x * y < (-2%1) 2 = 22~
~0 -1| FF FF) 11111111 11111111 m So, maintaining exact results...
~0+1 0] 00 00[00000000 00000000

= would need to keep expanding word size with each product computed
= js done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 6 n, C B pective, Third Edition

Unsigned Multiplication in C

Signed Multiplication in C

w OIT - TTT1 w OIT -+ TTT1

Operands: w bits

Operands: w bits

* vy OTT —~++ TTT] * v OTT —~«+ TTT]

True Product: 2*w bits # - VT T T eee

True Product: 2*w bits " V[T T T eee TTTTTTT oo TTT]

Discard w bits: w bits

m Standard Multiplication Function
= |gnores high order w bits

m Implements Modular Arithmetic
UMult,(u,v)= u -v mod2%

v , Comp e pective, Third Edition

Code Security Example #2

= SUN XDR library
= Widely used library for transferring data between machines

UMult,(u,v) [TTT <+« TTT]

lvoid' copy_elements (void *ele_src[], int ele_cnt, size_ t ele_size);

ele_src

malloc(ele_cnt * ele_size)

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

XDR Vulnerability

malloc(ele_cnt * ele_size)

= What if:
" ele_cnt =20+1
" ele_size =4096 =212

= Allocation=??
m Chime in: https://chimein.cla.umn.edu/course/view/2021
(Question 16257)
W (22041)- 2122220212 4 2122932 4 2122)12

= How can | make this function secure?

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

TMult,(u,v) [TTT <+« TTT]

Discard w bits: w bits

m Standard Multiplication Function
Ignores high order w bits

Some of which are different for signed
vs. unsigned multiplication

Lower bits are the same

o7 , Comp pective, Third Edition 68

XDR Code

void* copy_elements (void *ele_src[], int ele_cnt, size_t ele_size) {
/*
* Allocate buffer for ele_cnt objects, each of ele_size bytes
* and copy from locations designated by ele_src
=Y
void *result = malloc(ele_cnt * ele size);
if (result == NULL)
/* malloc failed */
return NULL;
void *next = result;
int i;
for (i = 0; i < ele_cnt; i++) {
/* Copy object i to destination */
memcpy (next, ele_src[i], ele_size);
/* Move pointer to next memory region */
next += ele_size;
}

return result;

Ll Comp B pective, Third Edition 7

Power-of-2 Multiply with Shift

m Operation
= u << kgivesu * 2k
= Both signed and unsigned k
w OIT <« TTT]
Wl

True Product: w+k bits © 2K [T 11 _eee T T] 0] -« Jol0]

UMult,(u,29 [Ceee TTT o[«+e To[0]
TMult,(u , 2%)

Operands: w bits

Discard k bits: w bits

= Examples
"u<<3 = u*8
" (u << 5) - (u<< 3)== u * 24
= Most machines shift and add faster than multiply

il « grammer's Perspective, Third Edition 72

11

https://chimein.cla.umn.edu/course/view/2021

Compiled Multiplication Code

C Function

long mull2(long x)
{
return x*12;

}

Compiled Arithmetic Operations Explanation

leaq (%rax,%rax,2), %rax t <- x+x*2
salqg $2, %rax return t << 2;

= C compiler automatically generates shift/add code when
multiplying by constant

v , Comp er pective, Third Edition

Division in C
m Integer division /: rounds towards 0
= Choice (settled in C99) is historical, via FORTRAN and most CPUs
m Division by zero: undefined, usually fatal
m Unsigned division: no overflow possible
m Signed division: overflow almost impossible

= Exception: TMin/-1 is un-representable, and so undefined
= On x86 this too is a default-fatal exception

Unsigned Power-of-2 Divide with Shift

= Quotient of Unsigned by Power of 2
" u >> kgives Lu / 2¢]
= Uses logical shift

k
y [[L==1TT<<TT1 Binary Point

Operands:
i | 2k [O] e<< JoJ1]0] <<« JoJ0]
7
Division: w/2k [0 eee JOJO[[[eee T T eee TT1]
Result: | s/2k| [OI<eeTo[o] T T e T
Division Computed Hex Binary
x 15213 15213 3B 6D| 00111011 01101101
x >> 1 7606.5 7606 1D B6| 00011101 10110110
x >> 4 950.8125 950 03 B6| 00000011 10110110
x >> 8 | 59.4257813 59 00 3B| 00000000 00111011

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Background: Rounding in Math

How to round to the nearest integer?

m Cannot have both:
= round(x + k) = round(x) + k (k integer), “translation invariance”
= round(-x) = -round(x) “negation invariance”

] |_xJ, read “floor”: always round down (to -<):
ml2.0]=2]1.7]=1,[-2.2]=-3

[] |—x-|, read “ceiling”: always round up (to +o):

n[2.0]=2,[1.7]=2,[-2.2]=-2

m Cinteger operators mostly use round to zero, which is like
floor for positive and ceiling for negative

Undefined behavior

= Many things you should not do are officially called
“undefined” by the C language standard

= Meaning: compiler can do anything it wants
Examples:

= Accessing beyond the ends of an array

= Dividing by zero

= Overflow in signed operations

Things you do in this
section of the course!

= Shifts of negative values

m Bad interaction with improving compiler optimizers

m Gap between standard and lenient practical compilers not
yet resolved

Compiled Unsigned Division Code

C Function

unsigned long udiv8
(unsigned long x)
{

return x/8;

}

Compiled Arithmetic Operations Explanation

shrq $3, srax ‘ # Logical shift
return x >> 3;

m Uses logical shift for unsigned

m For Java Users
= Logical shift written as >>>

gramm pective, Third Edition

12

Signed Power-of-2 Divide with Shift

= Quotient of Signed by Power of 2
" x > kgives L x / 2¢]
= Uses arithmetic shift
= Rounds wrong direction whenu < 0

k
x [ITTwTT] Binary Point

Operands:
| 2k [O] eee JOJ1]0O] e« JoJ0O] /
7

Division: x/2k [T eee TTTTT oo T T eee TT1]
Result: RoundDown(x/2%¥) [T ees TT T 1T oo]

Division | Computed Hex Binary
y -15213 -15213 C4 93] 11000100 10010011
y > 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 |-59.4257813 -60 FF C4) 11111111 11000100

, Comp er pective, Third Edition 1

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: x
+2k—1

Incremented by 1
Divisor: | ok m—mﬂm—wml
[x/2¢] A=A T M T=TT]

Binary Point

{

Incremented by 1

Biasing adds 1 to final result

.G e pective, Third Edition Ll

Remainder operator

Written as % in C
x % yisthe remainder after divisionx / y
E.g., x % 10 is the lowest digit of non-negative x

Behavior for negative values matches /’s rounding toward
zero

"b*(a/b) + (a $b) =a
m l.e. sign of remainder matches sign of dividend
m (Some other languages have other conventions: sign of
result equals sign of divisor, sometimes distinguished as
“modulo”, or always positive)

Correct Power-of-2 Divide

= Quotient of Negative Number by Power of 2

= Want [x / 2€] (Round Toward 0)
= Computeas | (x+2¢-1) / 2¢]
= InC: (x + (1<<k)-1) >> k
= Biases dividend toward 0

Case 1: No rounding

Dividend: u

k

[L] T e++ T JO[<<« J0]0]

+2k_1 [0 <o+ To[o[1] o= [I[T

[L] T eee T Jaf eee Taf1]

Binary Point

Divisor: | 2k [O] ee« JoJ1]O[<« Jo00O]

|—u/2"—| [ees [1]1]1 oo _'11 vee [1]1

Biasing has no effect

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Compiled Signed Division Code

C Function

{

}

long idiv8(long x)

return x/8;

addq $7, %rax
jmp L3

 Comp B pective, Third Edition

Compiled Arithmetic Operations Explanation
testq %rax, %rax if x <0
s L4 x +=7;
L3: # Arithmetic shift
sarq $3, %rax return x >> 3;
ret
L4:

m Uses arithmetic shift for int

m For Java Users
= Arith. shift written as >>

Today: Bits, Bytes, and Integers

Integers

" Summary

pective, Third Edition

13

Arithmetic: Basic Rules

= Addition:
= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level
® Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

= Multiplication:

Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

Unsigned: multiplication mod 2%

Signed: modified multiplication mod 2% (result in proper range)

v , Comp e pective, Third Edition 8

Properties of Unsigned Arithmetic

= Unsigned Multiplication with Addition Forms
Commutative Ring
= Addition is commutative group

Closed under multiplication
0 <UMult,(u,v) < 2¥-1
Multiplication Commutative
UMult,(u,v) = UMult,(v, u)
Multiplication is Associative
UMult,(t, UMult,(u, v)) = UMult,(UMult,(t, u), v)
1is multiplicative identity
UMult,(u, 1) = u
Multiplication distributes over addtion
UMult,(t, UAdd,,(u, v)) = UAdd,(UMult,(t, u), UMult,(t, v))

v .G e pective, Third Edition o

Why Should | Use Unsigned?

m Don’t use without understanding implications
® Easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+l];

= Can be very subtle
#define DELTA sizeof (int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 8

Arithmetic: Basic Rules

m Unsigned ints, 2’s complement ints are isomorphic rings:
isomorphism = casting

m Left shift
= Unsigned/signed: multiplication by 2%
= Always logical shift

m Right shift
= Unsigned: logical shift, div (division + round to zero) by 2%
= Signed: arithmetic shift
= Positive numbers: div (division + round to zero) by 2k

= Negative numbers: div (division + round away from zero) by 2%
Use biasing to fix

P pective, Third Edition

Properties of Two’s Comp. Arithmetic

m Isomorphic Algebras
= Unsigned multiplication and addition
= Truncating to w bits
= Two’s complement multiplication and addition
= Truncating to w bits
m Both Form Rings
= |somorphic to ring of integers mod 2%
m Comparison to (Mathematical) Integer Arithmetic
= Both are rings
= Integers obey ordering properties, e.g.,

u>0 = u+tv>v
u>0,v>0 = u-v>0

= These properties are not obeyed by two’s comp. arithmetic
TMax + 1 == TMin

52 = JOLUPE ==
. Compy = 2

, Third Edition

030 (16-bit words)

Counting Down with Unsigned

m Proper way to use unsigned as loop index

unsigned i;

for (i = ent-2; i < ent; i--)

a[i] += a[i+l];
m See Robert Seacord, Secure Coding in C and C++
= (Standard guarantees that unsigned addition will behave like modular
arithmetic
= 0-1-> UMax

u Even better
size t i;
for (i = ent-2; i < ent; i--)
a[i] += al[i+l];
= Data type size_t defined as unsigned value with length = word size
= Code will work even if ecnt=UMax
= Whatif ent is signed and < 0?
C &

mer's Perspective, Third Edition

14

Why Should | Use Unsigned? (cont.)

m Do Use When Performing Modular Arithmetic
= Multiprecision arithmetic
m Do Use When Using Bits to Represent Sets

= Logical right shift, no sign extension

v G er pective, Third Edition o

Byte-Oriented Memory Organization

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= In reality, it’s not, but can think of it that way
= An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
= Think of a process as a program being executed

= So, a program can clobber its own data, but not that of others

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition (]

Word-Oriented Memory Organization

32-bit 64-bit

a Bytes Addr.
m Addresses Specify Byte Words Words ="
Locations 0000
Addr
= Address of first byte in word - | [o001l
® Addresses of successive words differ aoeo Addr | gggi
by 4 (32-bit) or 8 (64-bit) = —

0000 0004
Adar 0005
0004 0006
0007
0008
Addr 0009
ooos [f o 0010
= 0011
0008 0012
Addr 0013
0012 0014
0015

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 9

Today: Bits, Bytes, and Integers

Integers
.
.
.

m Representations in memory, pointers, strings

pective, Third Edition

Machine Words

m Any given computer has a “Word Size”

= Nominal size of integer-valued data

= and of addresses

= Until recently, most machines used 32 bits (4 bytes) as word size
= Limits addresses to 4GB (232 bytes)

= [ncreasingly, machines have 64-bit word size
= Potentially, could have 18 EB (exabytes) of addressable memory

= That’s 18.4 X 108

= Machines still support multiple data formats
= Fractions or multiples of word size
= Always integral number of bytes

c B

pective, Third Edition

Example Data Representations

char

short

int

long

float
double
long double

pointer

C Data Type pical 32-bi
1

2

© &~ B b

pective, Third Edition

Typical 64-bi
1

x86-64
1

15

Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?
= Conventions
= Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address
= Little Endian: x86, ARM processors running Android, iOS, and
Windows
= Least significant byte has lowest address

v G er pective, Third Edition

Decimal: 15213

Representing Integers |ginary: o011 1011 0110 1101

Hex: 8 B 6 D

int A = 15213;
IA32, x86-64 Sun

long int C = 15213;

1A32 x86-64 Sun

int B = -15213;
IA32, x86-64 Sun

I~

Two’s complement representation

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

show_bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show_bytes ((pointer) &a, sizeof(int));

Result (Linux x86-64):

int a = 15213;

0x7ff£fb7£71dbc 6d
0x7fffb7£71dbd 3b
0x7fffb7£f71dbe 00
0x7fffb7£71dbf 00

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 101

Byte Ordering Example

m Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
[[JoiJ23[aser] 1]

Little Endian 0x100 0x101 0x102 0x103
[[Ter[as[23or] 1]

o pective, Third Edition %

Examining Data Representations

m Code to Print Byte Representation of Data
= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

void show_bytes (pointer start, size_t len){
size t i;
for (i = 0; i < len; i++)
printf ("$p\t0x%.2x\n" ,start+i, start[i]);
printf("\n");
}

Printf directives:
%p: Print pointer
%x: Print hexadecimal

 Comp B pective, Third Edition

Representing Pointers

int B 15213;
int *P &B;
Sun 1A32 Xx86-64
o | *
][] [=
=] [=] [=
(=] [
FD
TF
00
[00 |

Different compilers & machines assign different locations to objects

Even get different results each time run program @

Bryantand 75N, Computer Systems: A Programmen s Perspective, ition

16

Representing Strings

103

‘ char S[6] = "18213"; I
m Stringsin C
= Represented by array of characters
= Each character encoded in ASCII format 1A32 Sun
= Standard 7-bit encoding of character set 31 31
= Character “0” has code 0x30 38 38
— Digit i has code 0x30+i 32 32
= String should be null-terminated 31 31
= Final character = 0 33 33
m Compatibility 00 00
= Byte ordering not an issue
v . . pective, Third Edition
Integer C Puzzles
x<0 = ((x*2) < 0)

Initialization

int x = foo();
int y = bar();
unsigned ux = x;

unsigned uy = y;

https://chimein.cla.umn.edu/course/view/2021

.oux > -1

x>0&& y>0=> x+y >0

(x]|-x)>>31 == -1

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

105

Reading Byte-Reversed Listings

m Disassembly

= Text representation of binary machine code
= Generated by program that reads the machine code

m Example Fragment

Address
8048365: 5b
8048366:
804836¢c:

Instruction Code

81 c3 ab 12 00 00
e e
83 bb 28 0000 00 00

Assembly Rendition

pop %ebx

add $0x12ab, $ebx
cmpl $0x0,0x28 (vebx)

m Deciphering Numbers

= Value:

= Pad to 32 bits:
= Split into bytes:
" Reverse:

, Third Edition

0x12ab
0x000012ab
000012 ab
ab 12 00 00

Bonus: More Integer C Puzzles

Initialization

int x = foo();
int y = bar();
unsigned ux = x;

unsigned uy = y;

x <0
ux >= 0
x &7 =17
ux > -1
>y

* x >= 0
>0 &8 y
>= 0
<=0
(x| -x)>>31
ux >> 3 ==
X >> 3 =
x & (x-1)

HoX X XX

pe

, Third Edition

= ((x*2) < 0)

= (x<<30) < 0

= -x < -y
>0 => x+y>0

-x <=0
-x >= 0

17

