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Bits, Bytes, and Integers

CSci 2021: Machine Architecture and Organization
September 14th-19th, 2018

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

 Representations in memory, pointers, strings
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Everything is bits

 Each bit is 0 or 1

 By encoding/interpreting sets of bits in various ways
 Computers determine what to do (instructions)

 … and represent and manipulate numbers, sets, strings, etc…

 Why bits?  Electronic Implementation

 Easy to store with bistable elements

 Reliably transmitted on noisy and inaccurate wires 

0.0V

0.2V

0.9V

1.1V

0 1 0
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For example, can count in binary

 Base 2 Number Representation

 Represent 1521310 as 111011011011012

 Represent 1.2010 as 1.0011001100110011[0011]…2

 Represent 1.5213 X 104 as 1.11011011011012 X 213
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Encoding Byte Values

 Byte = 8 bits

 Binary 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal 0016 to FF16

 Base 16 number representation

 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Write FA1D37B16 in C as

– 0xFA1D37B

– 0xfa1d37b 

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
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Aside: ASCII table

0 1 2 3 4 5 6 7 8 9 a b c d e f

0x0_ \0 ^A ^B ^C ^D ^E ^F ^G ^H \t \n ^K ^L ^M ^N ^O

0x1_ ^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ESC FS GS RS US

0x2_ SPC ! " # $ % & ' ( ) * + , - . /

0x3_ 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

0x4_ @ A B C D E F G H I J K L M N O

0x5_ P Q R S T U V W X Y Z [ \ ] ^ _

0x6_ ` a b c d e f g h I j k l m n o

0x7_ p q r s t u v w x y z { | } ~ DEL
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Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8
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Boolean Algebra

 Developed by George Boole in 19th Century

 Algebraic representation of logic

 Encode “True” as 1 and “False” as 0

And (math: ∧)

 A&B = 1 when both A=1 and B=1

Or (math: ∨ )

 A|B = 1 when either A=1 or B=1

Not (math: ¬)

 ~A = 1 when A=0

Exclusive-Or “xor” (math: ⊕)

 A^B = 1 when either A=1 or B=1, but not both
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General Boolean Algebras

 Operate on bit vectors

 Operations applied bitwise

 All of the properties of Boolean algebra apply

01101001

& 01010101

01101001

| 01010101

01101001

^ 01010101 ~ 01010101

01000001 01111101 00111100 10101010
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Example: Representing & Manipulating Sets

 Representation

 Width w bit vector represents subsets of {0, …, w–1}

 aj = 1 if j ∈ A

 01101001 { 0, 3, 5, 6 }

 76543210

 01010101 { 0, 2, 4, 6 }

 76543210

 Operations
 &    Intersection 01000001 { 0, 6 }

 |     Union 01111101 { 0, 2, 3, 4, 5, 6 }

 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

 ~ Complement 10101010 { 1, 3, 5, 7 }
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Bit-Level Operations in C

 Operations &,  |,  ~,  ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned

 View arguments as bit vectors

 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102

 ~0x00 → 0xFF

 ~000000002 → 111111112

 0x69 & 0x55 → 0x41

 011010012 & 010101012 → 010000012

 0x69 | 0x55 → 0x7D

 011010012 | 010101012 → 011111012
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Contrast: Logic Operations in C

 Contrast to Logical Operators

 &&, ||, !

 View 0 as “False”

 Anything nonzero as “True”

 Always return 0 or 1

 Early termination (AKA “short-circuit evaluation”)

 Examples (char data type)
 !0x41 →  0x00

 !0x00 →  0x01

 !!0x41 →  0x01

 0x69 && 0x55 →  0x01

 0x69 || 0x55 →  0x01

 p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)…

one of the more common oopsies in

C programming
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Shift Operations

 Left Shift: x << y

 Shift bit-vector x left y positions

– Throw away extra bits on left

 Fill with 0’s on right

 Right Shift: x >> y

 Shift bit-vector x right y positions

 Throw away extra bits on right

 Logical shift: fill with 0’s on left

 Arithmetic shift: replicate most                                                                       
significant bit on left

 Undefined Behavior
 Shift amount < 0 or ≥ word size

 Signed shift into or out of sign bit (i.e., arith. behavior not assured)

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000
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Interlude: ChimeIn

https://chimein.cla.umn.edu/course/view/2021

 Which of the following numbers represented in hex is not
a multiple of 4?
 0x2248730c

 0xf4d56f9e

 0x1c841a94

 0x0970bd90

 0xac3f6978

 Idea: it is enough to look at the last digit

 Like divisibility by 10, 2 and 5 for decimal

 0x0, 0x4, 0x8, and 0xc = decimal 12 are multiples of 4

 0xe = 14 is even but not a multiple of 4
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Binary Number Property

 w = 0:

 1 = 20

 Assume true for w-1:

 1 + 1 + 2 + 4 + 8 + … + 2w-1 + 2w =    2w + 2w    =    2w+1

1+ 2i

i=0

w-1

å = 2w

Claim

1 + 1 + 2 + 4 + 8 + … + 2w-1  = 2w

=    2w
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Encoding Integers

short int x =  15213;

short int y = -15213;

 C short 2 bytes long

 Sign Bit

 For 2’s complement, most significant bit indicates sign

 0 for nonnegative

 1 for negative

B2T (X )  xw1 2
w1

 xi 2
i

i0

w2

B2U(X )  xi 2
i

i0

w1



Unsigned Two’s Complement

Sign
Bit

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 

y -15213 C4 93 11000100 10010011 
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Four-bit Example, unsigned

1 1 1 1 = 1510
Unsigned:

8  4  2  1

This approach can represent 0 through 15
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Four-bit Example, sign + magnitude

1 1 1 1 = -710Sign + magnitude:

4  2  1

This approach can represent -7 through 7
Disadvantages: special cases, -0

Negate 
if 1
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Four-bit Example, two’s complement

1 1 1 1 = -110Two’s complement:

-8  4  2  1

This approach can represent -8 through 7
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Four-bit Example

1 1 1 1 = 1510

1 1 1 1 = -110

Unsigned:

Two’s complement:

8  4  2  1

-8  4  2  1
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Encoding Integers

short int x =  15213;

short int y = -15213;

 C short 2 bytes long

 Sign Bit

 For 2’s complement, most significant bit indicates sign

 0 for nonnegative

 1 for negative

B2T (X )  xw1 2
w1

 xi 2
i

i0

w2

B2U(X )  xi 2
i

i0

w1



Unsigned Two’s Complement

Sign
Bit

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 

y -15213 C4 93 11000100 10010011 
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Two-complement Encoding Example (Cont.)
x =      15213: 00111011 01101101

y =     -15213: 11000100 10010011

Weight 15213 -15213 

1 1 1 1 1 
2 0 0 1 2 
4 1 4 0 0 
8 1 8 0 0 

16 0 0 1 16 
32 1 32 0 0 
64 1 64 0 0 

128 0 0 1 128 
256 1 256 0 0 
512 1 512 0 0 

1024 0 0 1 1024 
2048 1 2048 0 0 
4096 1 4096 0 0 
8192 1 8192 0 0 

16384 0 0 1 16384 
-32768 0 0 1 -32768 

Sum  15213  -15213 
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Numeric Ranges
 Unsigned Values

 UMin = 0

000…0

 UMax = 2w – 1

111…1

 Two’s Complement Values

 TMin = –2w–1

100…0

 TMax = 2w–1 – 1

011…1

 Other Values

 Minus 1

111…1

 Decimal Hex Binary 
UMax 65535 FF FF 11111111 11111111 

TMax 32767 7F FF 01111111 11111111 

TMin -32768 80 00 10000000 00000000 

-1 -1 FF FF 11111111 11111111 

0 0 00 00 00000000 00000000 
 

Values for W = 16
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Values for Different Word Sizes

 Observations

 |TMin | = TMax + 1

 Asymmetric range

 UMax = 2 * TMax + 1 

 W 

 8 16 32 64 

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615 

TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807 

TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808 
 
 

 C Programming

 #include <limits.h>

 Declares constants, e.g.,

 ULONG_MAX

 LONG_MAX

 LONG_MIN

 Values platform specific
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Unsigned & Signed Numeric Values
 Equivalence

 Same encodings for nonnegative 
values

 Uniqueness
 Every bit pattern represents 

unique integer value

 Each representable integer has 
unique bit encoding

  Can Invert Mappings
 U2B(x)  =  B2U-1(x)

 Bit pattern for unsigned 
integer

 T2B(x)  =  B2T-1(x)

 Bit pattern for two’s comp 
integer

X B2T(X)B2U(X)

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

–88

–79

–610

–511

–412

–313

–214

–115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7
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T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Mapping Between Signed & Unsigned

U2T

U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

 Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret
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Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T

T2U
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Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

+ + + + + +• • •

- + + + + +• • •

ux

x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X
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0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement 
Range

Unsigned
Range

Conversion Visualized

 2’s Comp.  Unsigned
 Ordering Inversion

 Negative  Big Positive
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Signed vs. Unsigned in C

 Constants

 By default are considered to be signed integers

 Unsigned if have “U” as suffix

0U, 4294967259U

 Casting
 Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls

tx = ux;

uy = ty;
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0 0U == unsigned

-1 0 < signed

-1 0U > unsigned

Casting and Comparison Surprises
 Expression Evaluation

 If there is a mix of unsigned and signed in single expression, 
signed values implicitly cast to unsigned

 Including comparison operations <, >, ==, <=, >=

 Examples for W = 32:    TMIN = -2,147,483,648 ,     TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation

0 0U

-1 0

-1 0U

https://chimein.cla.umn.edu/course/view/2021
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0 0U == unsigned

-1 0 < signed

-1 0U > unsigned

2147483647 -2147483648 > signed

2147483647U -2147483648 < unsigned

-1 -2 > signed

(unsigned) -1 -2 > unsigned

2147483647 2147483648U < unsigned

2147483647 (int) 2147483648U > signed

Casting and Comparison Surprises
 Expression Evaluation

 If there is a mix of unsigned and signed in single expression, 
signed values implicitly cast to unsigned

 Including comparison operations <, >, ==, <=, >=

 Examples for W = 32:    TMIN = -2,147,483,648 ,     TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation

0 0U

-1 0

-1 0U

2147483647 -2147483647-1 

2147483647U -2147483647-1 

-1 -2 

(unsigned)-1 -2 

2147483647 2147483648U 

2147483647 (int) 2147483648U 
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Brief announcements

 About 1 week left to go on HA1

 Keep your questions coming, don’t put it off

 My office hours tomorrow will move to 3-4pm

 Still in 4-225E Keller
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Summary
Casting Signed ↔ Unsigned: Basic Rules

 Bit pattern is maintained

 But reinterpreted

 Can have unexpected effects: adding or subtracting 2w

 Expression containing signed and unsigned int
 int is cast to unsigned!!
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Typical Usage

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, MSIZE);

printf(“%s\n”, mybuf);

}

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Malicious Usage

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, -MSIZE);

. . .

}

/* Declaration of library function memcpy */

void *memcpy(void *dest, void *src, size_t n);

typedef unsigned long size_t;

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

 Representations in memory, pointers, strings

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension

 Task:

 Given w-bit signed integer x

 Convert it to w+k-bit integer with same value

 Rule:
 Make k copies of sign bit:

 X  =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X  • • • • • •

• • •

w

wk
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Sign Extension Example

 Converting from smaller to larger integer data type

 C automatically performs sign extension

short int x =  15213;

int ix = (int) x; 

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101

ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011
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Summary:
Expanding, Truncating: Basic Rules

 Expanding (e.g., short int to int)

 Unsigned: zeros added

 Signed: sign extension

 Both yield expected result

 Truncating (e.g., unsigned to unsigned short)
 Unsigned/signed: bits are truncated

 Result reinterpreted

 Unsigned: mod operation

 Signed: similar to mod

 For small numbers yields expected behavior
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Unsigned Addition

 Standard Addition Function

 Ignores carry output

 Implements Modular Arithmetic

s = UAddw(u , v) = u + v mod 2w

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)
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0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer Addition

 Integer Addition

 4-bit integers u, v

 Compute true sum 
Add4(u , v)

 Values increase linearly 
with u and v

 Forms planar surface

Add4(u , v)

u

v
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0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

 Wraps Around

 If true sum ≥ 2w

 At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow
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Mathematical Properties

 Modular Addition Forms an Abelian Group

 Closed under addition

0  UAddw(u , v)  2w –1

 Commutative

UAddw(u , v) = UAddw(v , u)

 Associative

UAddw(t, UAddw(u , v)) = UAddw(UAddw(t, u ), v)

 0 is additive identity

UAddw(u , 0) = u

 Every element has additive inverse

 Let UCompw (u ) = 2w – u
UAddw(u , UCompw (u )) = 0
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Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level Behavior

 Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);

t = u + v

 Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)
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TAdd Overflow

 Functionality

 True sum requires w+1
bits

 Drop off MSB

 Treat remaining bits as 
2’s comp. integer

–2w –1

–2w

0

2w –1–1

2w–1

True Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver
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-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

 Values

 4-bit two’s comp.

 Range from -8 to +7

 Wraps Around

 If sum  2w–1

 Becomes negative

 At most once

 If sum < –2w–1

 Becomes positive

 At most once

TAdd4(u , v)

u

v

PosOver

NegOver
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Mathematical Properties of TAdd

 Isomorphic Group to unsigneds with UAdd

 TAddw(u , v) =  U2T(UAddw(T2U(u ), T2U(v)))

 Since both have identical bit patterns

 Two’s Complement Under TAdd Forms a Group

 Closed, Commutative, Associative, 0 is additive identity

 Every element has additive inverse

TCompw(u) 
u u  TMinw

TMinw u  TMinw





60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Characterizing TAdd

 Functionality

 True sum requires w+1 bits

 Drop off MSB

 Treat remaining bits as 2’s 
comp. integer

TAddw (u,v) 

u  v  2
w1

u  v  TMinw

u  v TMinw  u  v  TMaxw

u  v  2
w1

TMaxw  u  v









(NegOver)

(PosOver)

u

v

< 0 > 0

< 0

> 0

Negative Overflow

Positive Overflow

TAdd(u , v)

2w

2w

u

v

> 0< 0

> 0

< 0

TAdd(u , v)

Sign Bit Set
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Signed/Unsigned Overflow Differences

 Unsigned:

 Overflow if carry out of last 
position

 Also just called “carry” (C)

 Signed:

 Result wrong if input signs are 
the same but output sign is 
different

 In CPUs, unqualified 
“overflow” usually means 
signed (O or V)

u

v

UAdd(u , v)

u

v

< 0> 0

< 0

> 0

Negative Overflow

Positive Overflow

TAdd(u , v)

Carry Out

u

v

< 0> 0

< 0

> 0

TAdd(u , v)

Sign Bit Set
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Sign bit table, signed ordering

-4 -3 -2 -1 0 1 2 3

3 -1 0 1 2 3 -4 -3 -2

2 -2 -1 0 1 2 3 -4 -3

1 -3 -2 -1 0 1 2 3 -4

0 -4 -3 -2 -1 0 1 2 3

-1 3 -4 -3 -2 -1 0 1 2

-2 2 3 -4 -3 -2 -1 0 1

-3 1 2 3 -4 -3 -2 -1 0

-4 0 1 2 3 -4 -3 -2 -1
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Sign bit table, unsigned ordering

0 1 2 3 -4 -3 -2 -1

-1 -1 0 1 2 3 -4 -3 -2

-2 -2 -1 0 1 2 3 -4 -3

-3 -3 -2 -1 0 1 2 3 -4

-4 -4 -3 -2 -1 0 1 2 3

3 3 -4 -3 -2 -1 0 1 2

2 2 3 -4 -3 -2 -1 0 1

1 1 2 3 -4 -3 -2 -1 0

0 0 1 2 3 -4 -3 -2 -1
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Negation: Complement & Increment

 Claim: Following Holds for 2’s Complement
~x + 1 == -x

 Complement
 Observation: ~x + x == 1111…111 == -1

1 0 0 1 0 11 1x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1
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Complement & Increment Examples

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 

~x -15214 C4 92 11000100 10010010 

~x+1 -15213 C4 93 11000100 10010011 

y -15213 C4 93 11000100 10010011 
 

x = 15213

 Decimal Hex Binary 
0 0 00 00 00000000 00000000 

~0 -1 FF FF 11111111 11111111 

~0+1 0 00 00 00000000 00000000 
 

x = 0
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Multiplication

 Goal: Computing Product of w-bit numbers x, y

 Either signed or unsigned

 But, exact results can be bigger than w bits

 Unsigned: up to 2w bits

 Result range: 0 ≤ x * y ≤ (2w – 1) 2 =  22w – 2w+1 + 1

 Two’s complement min (negative): Up to 2w-1 bits

 Result range: x * y ≥ (–2w–1)*(2w–1–1)  =  –22w–2 + 2w–1

 Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

 Result range: x * y ≤ (–2w–1) 2 =  22w–2

 So, maintaining exact results…

 would need to keep expanding word size with each product computed

 is done in software, if needed

 e.g., by “arbitrary precision” arithmetic packages
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Unsigned Multiplication in C

 Standard Multiplication Function

 Ignores high order w bits

 Implements Modular Arithmetic

UMultw(u , v)= u · v mod 2w

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •
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Signed Multiplication in C

 Standard Multiplication Function

 Ignores high order w bits

 Some of which are different for signed 
vs. unsigned multiplication

 Lower bits are the same

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •
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Code Security Example #2

 SUN XDR library

 Widely used library for transferring data between machines

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);

ele_src

malloc(ele_cnt * ele_size)
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XDR Code

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {

/*

* Allocate buffer for ele_cnt objects, each of ele_size bytes

* and copy from locations designated by ele_src

*/

void *result = malloc(ele_cnt * ele_size);

if (result == NULL)

/* malloc failed */

return NULL;

void *next = result;

int i;

for (i = 0; i < ele_cnt; i++) {

/* Copy object i to destination */

memcpy(next, ele_src[i], ele_size);

/* Move pointer to next memory region */

next += ele_size;

}

return result;

}
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XDR Vulnerability

 What if:
 ele_cnt = 220 + 1

 ele_size = 4096 = 212

 Allocation = ??

 Chime in: https://chimein.cla.umn.edu/course/view/2021
(Question 16257)

 (220 + 1) · 212 = 220·212  + 212 = 232  + 212 ≡ 212

 How can I make this function secure?

malloc(ele_cnt * ele_size)

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Power-of-2 Multiply with Shift

 Operation
 u << k gives u * 2k

 Both signed and unsigned

 Examples
 u << 3 == u * 8

 (u << 5) – (u << 3)== u * 24

 Most machines shift and add faster than multiply

• • •

0 0 1 0 0 0•••

u

2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

https://chimein.cla.umn.edu/course/view/2021
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leaq (%rax,%rax,2), %rax

salq $2, %rax

Compiled Multiplication Code

 C compiler automatically generates shift/add code when 
multiplying by constant

long mul12(long x)

{

return x*12;

}

t <- x+x*2

return t << 2;

C Function

Compiled Arithmetic Operations Explanation
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Background: Rounding in Math

 How to round to the nearest integer?

 Cannot have both:
 round(x + k) = round(x) + k (k integer), “translation invariance”

 round(-x) = -round(x) “negation invariance”

  x , read “floor”: always round down (to -∞):

  2.0  = 2,  1.7 = 1,  -2.2  = -3

  x , read “ceiling”: always round up (to +∞):

  2.0 = 2,  1.7 = 2,  -2.2 = -2

 C integer operators mostly use round to zero, which is like 
floor for positive and ceiling for negative
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Division in C

 Integer division /: rounds towards 0

 Choice (settled in C99) is historical, via FORTRAN and most CPUs

 Division by zero: undefined, usually fatal

 Unsigned division: no overflow possible

 Signed division: overflow almost impossible

 Exception: TMin/-1 is un-representable, and so undefined

 On x86 this too is a default-fatal exception
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Undefined behavior

 Many things you should not do are officially called 
“undefined” by the C language standard
 Meaning: compiler can do anything it wants

 Examples:
 Accessing beyond the ends of an array 

 Dividing by zero

 Overflow in signed operations

 Shifts of negative values

 Bad interaction with improving compiler optimizers

 Gap between standard and lenient practical compilers not 
yet resolved

Things you do in this 
section of the course!
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Unsigned Power-of-2 Divide with Shift

 Quotient of Unsigned by Power of 2
 u >> k gives   u / 2k 

 Uses logical shift

 Division Computed Hex Binary 
x 15213 15213 3B 6D 00111011 01101101 

x >> 1 7606.5 7606 1D B6 00011101 10110110 

x >> 4 950.8125 950 03 B6 00000011 10110110 

x >> 8 59.4257813 59 00 3B 00000000 00111011 
 

0 0 1 0 0 0•••

u

2k/

u / 2kDivision: 

Operands:
•••

k
••• •••

•••0 0 0••• •••

 u / 2k  •••Result:

.

Binary Point

0

0 0 0•••0
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shrq $3, %rax

Compiled Unsigned Division Code

 Uses logical shift for unsigned

 For Java Users 
 Logical shift written as >>>

unsigned long udiv8

(unsigned long x)

{

return x/8;

}

# Logical shift

return x >> 3;

C Function

Compiled Arithmetic Operations Explanation
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Signed Power-of-2 Divide with Shift

 Quotient of Signed by Power of 2
 x >> k gives   x / 2k 

 Uses arithmetic shift

 Rounds wrong direction when u < 0

0 0 1 0 0 0•••

x

2k/

x / 2kDivision: 

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

 Division Computed Hex Binary 
y -15213 -15213 C4 93 11000100 10010011 

y >> 1 -7606.5 -7607 E2 49  11100010 01001001 

y >> 4 -950.8125 -951 FC 49 11111100 01001001 

y >> 8 -59.4257813 -60 FF C4 11111111 11000100 
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Correct Power-of-2 Divide

 Quotient of Negative Number by Power of 2
 Want   x / 2k  (Round Toward 0)

 Compute as   (x+2k-1)/ 2k 

 In C: (x + (1<<k)-1) >> k

 Biases dividend toward 0

Case 1: No rounding

Divisor: 

Dividend:

0 0 1 0 0 0•••

u

2k/

 u / 2k 

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect
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Correct Power-of-2 Divide (Cont.)

Divisor: 

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/

 x / 2k 

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1
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testq %rax, %rax

js L4

L3:

sarq $3, %rax

ret

L4:

addq $7, %rax

jmp L3

Compiled Signed Division Code

 Uses arithmetic shift for int

 For Java Users 
 Arith. shift written as >>

long idiv8(long x)

{

return x/8;

}

if x < 0

x += 7;

# Arithmetic shift

return x >> 3;

C Function

Compiled Arithmetic Operations Explanation

83Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Remainder operator

 Written as % in C

 x % y is the remainder after division x / y

 E.g.,  x % 10 is the lowest digit of non-negative x

 Behavior for negative values matches /’s rounding toward 
zero
 b*(a / b) + (a % b) = a

 I.e. sign of remainder matches sign of dividend

 (Some other languages have other conventions: sign of 
result equals sign of divisor, sometimes distinguished as 
“modulo”, or always positive)
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

 Representations in memory, pointers, strings
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Arithmetic: Basic Rules

 Addition:

 Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

 Unsigned: addition mod 2w

 Mathematical addition + possible subtraction of 2w

 Signed: modified addition mod 2w (result in proper range)

 Mathematical addition + possible addition or subtraction of 2w

 Multiplication:
 Unsigned/signed: Normal multiplication followed by truncate, 

same operation on bit level

 Unsigned: multiplication mod 2w

 Signed: modified multiplication mod 2w (result in proper range)
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Arithmetic: Basic Rules

 Unsigned ints, 2’s complement ints are isomorphic rings: 
isomorphism = casting

 Left shift
 Unsigned/signed: multiplication by 2k

 Always logical shift

 Right shift
 Unsigned: logical shift, div (division + round to zero) by 2k

 Signed: arithmetic shift

 Positive numbers: div (division + round to zero) by 2k

 Negative numbers: div (division + round away from zero) by 2k

Use biasing to fix
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Properties of Unsigned Arithmetic

 Unsigned Multiplication with Addition Forms 
Commutative Ring
 Addition is commutative group

 Closed under multiplication

0  UMultw(u , v)  2w –1

 Multiplication Commutative

UMultw(u , v) = UMultw(v , u)

 Multiplication is Associative

UMultw(t, UMultw(u , v)) = UMultw(UMultw(t, u ), v)

 1 is multiplicative identity

UMultw(u , 1) = u

 Multiplication distributes over addtion

UMultw(t, UAddw(u , v)) = UAddw(UMultw(t, u ), UMultw(t, v))
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Properties of Two’s Comp. Arithmetic
 Isomorphic Algebras

 Unsigned multiplication and addition

 Truncating to w bits

 Two’s complement multiplication and addition

 Truncating to w bits

 Both Form Rings
 Isomorphic to ring of integers mod 2w

 Comparison to (Mathematical) Integer Arithmetic
 Both are rings

 Integers obey ordering properties, e.g.,

u > 0  u + v > v

u > 0, v > 0  u · v > 0

 These properties are not obeyed by two’s comp. arithmetic

TMax + 1 == TMin

15213 * 30426 == -10030 (16-bit words)
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Why Should I Use Unsigned?

 Don’t use without understanding implications

 Easy to make mistakes

unsigned i;

for (i = cnt-2; i >= 0; i--)

a[i] += a[i+1];

 Can be very subtle

#define DELTA sizeof(int)

int i;

for (i = CNT; i-DELTA >= 0; i-= DELTA)

. . .
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Counting Down with Unsigned

 Proper way to use unsigned as loop index
unsigned i;

for (i = cnt-2; i < cnt; i--)

a[i] += a[i+1];

 See Robert Seacord, Secure Coding in C and C++

 C Standard guarantees that unsigned addition will behave like modular 
arithmetic

 0 – 1  UMax

 Even better
size_t i;

for (i = cnt-2; i < cnt; i--)

a[i] += a[i+1];

 Data type size_t defined as unsigned value with length = word size

 Code will work even if cnt = UMax

 What if cnt is signed and < 0?
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Why Should I Use Unsigned? (cont.)

 Do Use When Performing Modular Arithmetic

 Multiprecision arithmetic

 Do Use When Using Bits to Represent Sets

 Logical right shift, no sign extension
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

 Representations in memory, pointers, strings
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Byte-Oriented Memory Organization

 Programs refer to data by address

 Conceptually, envision it as a very large array of bytes

 In reality, it’s not, but can think of it that way

 An address is like an index into that array

 and, a pointer variable stores an address

 Note: system provides private address spaces to each “process”
 Think of a process as a program being executed

 So, a program can clobber its own data, but not that of others

• • •
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Machine Words

 Any given computer has a “Word Size”

 Nominal size of integer-valued data

 and of addresses

 Until recently, most machines used 32 bits (4 bytes) as word size

 Limits addresses to 4GB (232 bytes)

 Increasingly, machines have 64-bit word size

 Potentially, could have 18 EB (exabytes) of addressable memory

 That’s 18.4 X 1018

 Machines still support multiple data formats

 Fractions or multiples of word size

 Always integral number of bytes
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Word-Oriented Memory Organization

 Addresses Specify Byte 
Locations
 Address of first byte in word

 Addresses of successive words differ 
by 4 (32-bit) or 8 (64-bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit

Words
Bytes Addr.

0012

0013

0014

0015

64-bit

Words

Addr 

=
??

Addr 

=
??

Addr 

=
??

Addr 

=
??

Addr 

=
??

Addr 

=
??

0000

0004

0008

0012

0000

0008
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Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8
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Byte Ordering

 So, how are the bytes within a multi-byte word ordered in 
memory?

 Conventions

 Big Endian: Sun, PPC Mac, Internet

 Least significant byte has highest address

 Little Endian: x86, ARM processors running Android, iOS, and 
Windows

 Least significant byte has lowest address
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Byte Ordering Example

 Example

 Variable x has 4-byte value of 0x01234567

 Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01
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Representing Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3    B    6    D

6D

3B

00

00

IA32, x86-64

3B

6D

00

00

Sun

int A = 15213;

93

C4

FF

FF

IA32, x86-64

C4

93

FF

FF

Sun

Two’s complement representation

int B = -15213;

long int C = 15213;

00

00

00

00

6D

3B

00

00

x86-64

3B

6D

00

00

Sun

6D

3B

00

00

IA32
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Examining Data Representations

 Code to Print Byte Representation of Data

 Casting pointer to unsigned char * allows treatment as a byte array

Printf directives:

%p: Print pointer

%x: Print hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){

size_t i;

for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);

printf("\n");

}

101Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

show_bytes Execution Example

int a = 15213;

printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):

int a = 15213;

0x7fffb7f71dbc 6d

0x7fffb7f71dbd 3b

0x7fffb7f71dbe 00

0x7fffb7f71dbf 00
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Representing Pointers

Different compilers & machines assign different locations to objects

Even get different results each time run program

int B = -15213;

int *P = &B;

x86-64Sun IA32

EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00
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char S[6] = "18213";

Representing Strings

 Strings in C

 Represented by array of characters

 Each character encoded in ASCII format

 Standard 7-bit encoding of character set

 Character “0” has code 0x30

– Digit i has code 0x30+i

 String should be null-terminated

 Final character = 0

 Compatibility
 Byte ordering not an issue

IA32 Sun

31

38

32

31

33

00

31

38

32

31

33

00
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Address Instruction Code Assembly Rendition

8048365: 5b                   pop    %ebx

8048366: 81 c3 ab 12 00 00    add    $0x12ab,%ebx

804836c: 83 bb 28 00 00 00 00 cmpl   $0x0,0x28(%ebx)

Reading Byte-Reversed Listings

 Disassembly

 Text representation of binary machine code

 Generated by program that reads the machine code

 Example Fragment

 Deciphering Numbers
 Value: 0x12ab

 Pad to 32 bits: 0x000012ab

 Split into bytes: 00 00 12 ab

 Reverse: ab 12 00 00
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Integer C Puzzles

1. x < 0  ((x*2) < 0)

2. ux > -1

3. x > 0 && y > 0  x + y > 0

4. (x|-x)>>31 == -1

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

Initialization

https://chimein.cla.umn.edu/course/view/2021
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Bonus: More Integer C Puzzles

• x < 0  ((x*2) < 0)

• ux >= 0

• x & 7 == 7  (x<<30) < 0

• ux > -1

• x > y  -x < -y

• x * x >= 0

• x > 0 && y > 0  x + y > 0

• x >= 0  -x <= 0

• x <= 0  -x >= 0

• (x|-x)>>31 == -1

• ux >> 3 == ux/8

• x >> 3 == x/8

• x & (x-1) != 0

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

Initialization


