
1

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine-Level Programming I: Basics

CSci 2021: Machine Architecture and Organization
September 24th-28th, 2018

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Machine Programming I: Basics

 History of Intel processors and architectures

 C, assembly, machine code

 Assembly Basics: Registers, operands, move

 Arithmetic & logical operations

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel x86 Processors

 Dominate laptop/desktop/server market

 Evolutionary design
 Backwards compatible up until 8086, introduced in 1978

 Added more features as time goes on

 Complex instruction set computer (CISC)
 Many different instructions with many different formats

 But, only a subset encountered with Linux programs

 Matches performance of more modern Reduced Instruction Set
Computers (RISC)

 In terms of speed. Less so for low power consumption.

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel x86 Evolution: Milestones

Name Date Transistors MHz

 8086 1978 29K 5-10
 First 16-bit Intel processor. Basis for IBM PC & DOS

 1MB address space

 386 1985 275K 16-33

 First 32 bit Intel processor , referred to as IA32

 Added “flat addressing”, capable of running Unix

 Pentium 4E 2004 125M 2800-3800
 First 64-bit Intel x86 processor, referred to as x86-64

 Core 2 2006 291M 1060-3500
 First multi-core Intel processor

 Core i7 2008 731M 1700-3900
 Four cores

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel x86 Processors, cont.
 Machine Evolution

 386 1985 0.3M

 Pentium 1993 3.1M

 Pentium/MMX 1997 4.5M

 PentiumPro 1995 6.5M

 Pentium III 1999 8.2M

 Pentium 4 2001 42M

 Core 2 Duo 2006 291M

 Core i7 2008 731M

 Added Features
 Instructions to support multimedia operations

 Instructions to enable more efficient conditional operations

 Transition from 32 bits to 64 bits

 More cores

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2015 State of the Art
 Core i7 Broadwell 2015

 Desktop Model
 4 cores

 Integrated graphics

 3.3-3.8 GHz

 65W

 Server Model
 8 cores

 Integrated I/O

 2-2.6 GHz

 45W

2

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86 Clones: Advanced Micro Devices
(AMD)
 Historically

AMD has followed just behind Intel

A little bit slower, a lot cheaper

 Then
 Recruited top circuit designers from Digital Equipment Corp. and

other downward trending companies

 Built Opteron: tough competitor to Pentium 4

Developed x86-64, their own extension to 64 bits

 Recent Years

 Intel got its act together

 Leads the world in semiconductor technology

AMD has fallen behind

 Spun off its semiconductor factories

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel’s 64-Bit History
 2001: Intel Attempts Radical Shift from IA32 to IA64

 Totally different architecture (Itanium)

 Executes IA32 code only as legacy

 Performance disappointing

 2003: AMD Steps in with Evolutionary Solution
 x86-64 (now called “AMD64”)

 Intel Felt Obligated to Focus on IA64

 Hard to admit mistake or that AMD is better

 2004: Intel Announces EM64T extension to IA32

 Extended Memory 64-bit Technology (now called “Intel 64”)

 Almost identical to x86-64!

 All but lowest-end x86 processors support x86-64
 But, lots of code still runs in 32-bit mode

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Our Coverage

 IA32

 The traditional x86

 For 2021: RIP, Summer 2015

 x86-64

 The standard

 cselabs> gcc hello.c

 cselabs> gcc –m64 hello.c

 Presentation
 Book covers x86-64

 Web aside on IA32

 We will only cover x86-64

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Machine Programming I: Basics

 History of Intel processors and architectures

 C, assembly, machine code

 Assembly Basics: Registers, operands, move

 Arithmetic & logical operations

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Definitions

 Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
or write assembly/machine code.
 Examples: instruction set specification, registers.

 Microarchitecture: Implementation of the architecture.
 Examples: cache sizes and core frequency.

 Code Forms:

 Machine Code: The byte-level programs that a processor executes

 Assembly Code: A text representation of machine code

 Example ISAs:

 Intel: x86, IA32, Itanium, x86-64

 ARM: Used in almost all smartphones

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CPU

Assembly/Machine Code View

Programmer-Visible State

 PC: Program counter

 Address of next instruction

 On x86-64, called “RIP”

 Register file
 Heavily used program data

 Condition codes

 Store status information about most recent
arithmetic or logical operation

 Used for conditional branching

PC

Registers

Memory

Code
Data
Stack

Addresses

Data

InstructionsCondition
Codes

 Memory

 Byte addressable array

 Code and user data

 Stack to support procedures

3

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
 Code in files p1.c p2.c

 Compile with command: gcc –Og p1.c p2.c -o p

 Use basic optimizations (-Og) [New since GCC 4.8]

 Put resulting binary in file p

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compiling Into Assembly
C Code (sum.c)

long plus(long x, long y);

void sumstore(long x, long y,

long *dest)

{

long t = plus(x, y);

*dest = t;

}

Generated x86-64 Assembly

sumstore:

pushq %rbx

movq %rdx, %rbx

call plus

movq %rax, (%rbx)

popq %rbx

ret

Obtain (on Ubuntu 14.04 machine) with command

gcc –Og –S sum.c

Produces file sum.s

Note: You may get different results on different machines
(older Linux, Mac OS X, …) due to different versions of gcc
and different compiler settings.

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Characteristics: Data Types

 “Integer” data of 1, 2, 4, or 8 bytes

 Data values

 Addresses (untyped pointers)

 Floating point data of 4, 8, or 10 bytes

 Code: Byte sequences encoding series of instructions

 No aggregate types such as arrays or structures
 Just contiguously allocated bytes in memory

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Characteristics: Operations

 Perform arithmetic function on register or memory data

 Transfer data between memory and register
 Load data from memory into register

 Store register data into memory

 Transfer control
 Unconditional jumps to/from procedures

 Conditional branches

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code for sumstore

0x0400595:

0x53

0x48

0x89

0xd3

0xe8

0xf2

0xff

0xff

0xff

0x48

0x89

0x03

0x5b

0xc3

Object Code

 Assembler
 Translates .s into .o

 Binary encoding of each instruction

 Nearly-complete image of executable code

 Missing linkages between code in different
files

 Linker

 Resolves references between files

 Combines with static run-time libraries

 E.g., code for malloc, printf

 Some libraries are dynamically linked

 Linking occurs when program begins
execution

• Total of 14 bytes

• Each instruction
1, 3, or 5 bytes

• Starts at address
0x0400595

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine Instruction Example
 C Code

 Store value t where designated by
dest

 Assembly
 Move 8-byte value to memory

 Quad words in Intel parlance

 Operands:

t: Register %rax

dest: Register %rbx

*dest: MemoryM[%rbx]

 Object Code
 3-byte instruction

 Stored at address 0x40059e

*dest = t;

movq %rax, (%rbx)

0x40059e: 48 89 03

4

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disassembled

Disassembling Object Code

 Disassembler
objdump –d sum

 Useful tool for examining object code

 Analyzes bit pattern of series of instructions

 Produces approximate rendition of assembly code

 Can be run on either a.out (complete executable) or .o file

0000000000400595 <sumstore>:

400595: 53 push %rbx

400596: 48 89 d3 mov %rdx,%rbx

400599: e8 f2 ff ff ff callq 400590 <plus>

40059e: 48 89 03 mov %rax,(%rbx)

4005a1: 5b pop %rbx

4005a2: c3 retq

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disassembled

Dump of assembler code for function sumstore:

0x0000000000400595 <+0>: push %rbx

0x0000000000400596 <+1>: mov %rdx,%rbx

0x0000000000400599 <+4>: callq 0x400590 <plus>

0x000000000040059e <+9>: mov %rax,(%rbx)

0x00000000004005a1 <+12>:pop %rbx

0x00000000004005a2 <+13>:retq

Alternate Disassembly

 Within gdb Debugger
% gdb sum

(gdb) disassemble sumstore

 Disassemble procedure

(gdb) x/14xb sumstore

 Examine the 14 bytes starting at sumstore

Object
0x0400595:

0x53

0x48

0x89

0xd3

0xe8

0xf2

0xff

0xff

0xff

0x48

0x89

0x03

0x5b

0xc3

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Can be Disassembled?

 Anything that can be interpreted as executable code

 Disassembler examines bytes and reconstructs assembly source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".

Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp

30001001: 8b ec mov %esp,%ebp

30001003: 6a ff push $0xffffffff

30001005: 68 90 10 00 30 push $0x30001090

3000100a: 68 91 dc 4c 30 push $0x304cdc91

Legal note: reverse engineering of
commercial software is often forbidden by
license agreements, and its status under
statute varies by jurisdiction

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: x86 Assembly Formats

 This class uses “AT&T” format, which is standard for
Unix/Linux x86(-64) systems
 Similar to historic Unix all the way back to PDP-11

 Intel’s own documentation, and Windows, use a different
“Intel” syntax
 Many arbitrary differences, but more internally consistent

AT&T syntax Intel syntax

Destination is last operand Destination is first operand

Size suffixes like “l” in movl Size on memory operands (“DWORD PTR”)

“%” on register names Just letters in register names

“$” on immediate values Just digits in immediates

Addressing modes with (,) Addressing modes with [+ *]

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Machine Programming I: Basics

 History of Intel processors and architectures

 C, assembly, machine code

 Assembly Basics: Registers, operands, move

 Arithmetic & logical operations

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

%rsp

x86-64 Integer Registers

 Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

5

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some History: IA32 Registers

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
n

e
ra

l p
u

rp
o

se

accumulate

counter

data

base

source

index

destination

index

stack

pointer

base

pointer

Origin
(mostly obsolete)

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Moving Data
 Moving Data

movq Source, Dest:

 Operand Types
 Immediate: Constant integer data

 Example: $0x400, $-533

 Like C constant, but prefixed with ‘$’

 Encoded with 1, 2, or 4 bytes

 Register: One of 16 integer registers

 Example: %rax, %r13

 But %rsp reserved for special use

 Some others have special uses for particular instructions

 Memory: 8 consecutive bytes of memory at address given by register

 Simplest example: (%rax)

 Various other “address modes”

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

movq Operand Combinations

Cannot do memory-memory transfer with a single instruction

movq

Imm

Reg

Mem

Reg

Mem

Reg

Mem

Reg

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src,Dest

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory Addressing Modes

 Normal (R) Mem[Reg[R]]

 Register R specifies memory address

 Like pointer dereferencing in C

movq (%rcx),%rax

 Displacement D(R) Mem[Reg[R]+D]

 Register R specifies start of memory region

 Constant displacement D specifies offset

movq 8(%rbp),%rdx

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of Simple Addressing Modes

void swap

(long *xp, long *yp)

{

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

}

swap:

movq (%rdi), %rax

movq (%rsi), %rdx

movq %rdx, (%rdi)

movq %rax, (%rsi)

ret

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

%rdi

%rsi

%rax

%rdx

Understanding Swap()

void swap

(long *xp, long *yp)

{

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

}

Memory

Register Value

%rdi xp

%rsi yp

%rax t0

%rdx t1

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

Registers

6

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers
Memory

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

0x120

0x118

0x110

0x108

0x100

Address

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

Registers
Memory

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

0x120

0x118

0x110

0x108

0x100

Address

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

0x120

0x118

0x110

0x108

0x100

Address

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Swap()

456

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

0x120

0x118

0x110

0x108

0x100

Address

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Swap()

456

123

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

0x120

0x118

0x110

0x108

0x100

Address

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complete Memory Addressing Modes

 Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
 D: Constant “displacement” 1, 2, or 4 bytes

 Rb: Base register: Any of 16 integer registers

 Ri: Index register: Any, except for %rsp

 S: Scale: 1, 2, 4, or 8 (why these numbers?)

 Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]

D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]

(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

7

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Address Computation Examples

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

%rdx 0xf000

%rcx 0x0100

https://chimein.cla.umn.edu/course/view/2021

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Address Computation Examples

%rdx 0xf000

%rcx 0x0100

0xf000 + 0x8

0xf000 + 0x100

0xf000 + 4*0x100

2*0xf000 + 0x80

0xf008

0xf100

0xf400

0x1e080

https://chimein.cla.umn.edu/course/view/2021

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logistics announcements

 Exercise set #1 is out now

 Due on paper at the beginning of Monday’s lecture

 HA2 on data operations coming soon

 Continuation of today’s lab

 To be due Friday, October 5th

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Machine Programming I: Basics

 History of Intel processors and architectures

 C, assembly, machine code

 Assembly Basics: Registers, operands, move

 Arithmetic & logical operations

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Computation Instruction

 leaq Src, Dst

 Src is address mode expression

 Set Dst to address denoted by expression

 Uses
 Computing addresses without a memory reference

 E.g., translation of p = &x[i];

 Computing arithmetic expressions of the form x + k*y

 k = 1, 2, 4, or 8

 Example

long m12(long x)

{

return x*12;

}
leaq (%rdi,%rdi,2), %rax # t <- x+x*2

salq $2, %rax # return t<<2

Converted to ASM by compiler:

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Arithmetic Operations

 Two Operand Instructions:

Format Computation

addq Src,Dest Dest = Dest + Src

subq Src,Dest Dest = Dest  Src

imulq Src,Dest Dest = Dest * Src

shlq Src,Dest Dest = Dest << Src Also called salq

sarq Src,Dest Dest = Dest >> Src Arithmetic

shrq Src,Dest Dest = Dest >> Src Logical

xorq Src,Dest Dest = Dest ^ Src

andq Src,Dest Dest = Dest & Src

orq Src,Dest Dest = Dest | Src

 Watch out for argument order!

 No distinction between signed and unsigned int (why?)

https://chimein.cla.umn.edu/course/view/2021
https://chimein.cla.umn.edu/course/view/2021

8

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Arithmetic Operations

 One Operand Instructions
incq Dest Dest = Dest + 1

decq Dest Dest = Dest  1

negq Dest Dest =  Dest

notq Dest Dest = ~Dest

 See book for more instructions

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic Expression Example

Interesting Instructions
 leaq: address computation

 salq: shift

 imulq: multiplication

 But, only used once

long arith

(long x, long y, long z)

{

long t1 = x+y;

long t2 = z+t1;

long t3 = x+4;

long t4 = y * 48;

long t5 = t3 + t4;

long rval = t2 * t5;

return rval;

}

arith:

leaq (%rdi,%rsi), %rax

addq %rdx, %rax

leaq (%rsi,%rsi,2), %rdx

salq $4, %rdx

leaq 4(%rdi,%rdx), %rcx

imulq %rcx, %rax

ret

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Arithmetic Expression
Example

long arith

(long x, long y, long z)

{

long t1 = x+y;

long t2 = z+t1;

long t3 = x+4;

long t4 = y * 48;

long t5 = t3 + t4;

long rval = t2 * t5;

return rval;

}

arith:

leaq (%rdi,%rsi), %rax # t1

addq %rdx, %rax # t2

leaq (%rsi,%rsi,2), %rdx

salq $4, %rdx # t4

leaq 4(%rdi,%rdx), %rcx # t5

imulq %rcx, %rax # rval

ret

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z

%rax t1, t2, rval

%rdx t4

%rcx t5

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine Programming I: Summary

 History of Intel processors and architectures

 Evolutionary design leads to many quirks and artifacts

 C, assembly, machine code

 New forms of visible state: program counter, registers, ...

 Compiler must transform statements, expressions, procedures into
low-level instruction sequences

 Assembly Basics: Registers, operands, move
 The x86-64 move instructions cover wide range of data movement

forms

 Arithmetic

 C compiler will figure out different instruction combinations to
carry out computation

