
1

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine-Level Programming I: Basics

CSci 2021: Machine Architecture and Organization
September 24th-28th, 2018

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Machine Programming I: Basics

 History of Intel processors and architectures

 C, assembly, machine code

 Assembly Basics: Registers, operands, move

 Arithmetic & logical operations

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel x86 Processors

 Dominate laptop/desktop/server market

 Evolutionary design
 Backwards compatible up until 8086, introduced in 1978

 Added more features as time goes on

 Complex instruction set computer (CISC)
 Many different instructions with many different formats

 But, only a subset encountered with Linux programs

 Matches performance of more modern Reduced Instruction Set 
Computers (RISC)

 In terms of speed.  Less so for low power consumption.

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel x86 Evolution: Milestones

Name Date Transistors MHz

 8086 1978 29K 5-10
 First 16-bit Intel processor.  Basis for IBM PC & DOS

 1MB address space

 386 1985 275K 16-33

 First 32 bit Intel processor , referred to as IA32

 Added “flat addressing”, capable of running Unix

 Pentium 4E 2004 125M 2800-3800
 First 64-bit Intel x86 processor, referred to as x86-64

 Core 2 2006 291M 1060-3500
 First multi-core Intel processor

 Core i7 2008 731M 1700-3900
 Four cores

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel x86 Processors, cont.
 Machine Evolution

 386 1985 0.3M

 Pentium 1993 3.1M

 Pentium/MMX 1997 4.5M

 PentiumPro 1995 6.5M

 Pentium III 1999 8.2M

 Pentium 4 2001 42M

 Core 2 Duo 2006 291M

 Core i7 2008 731M

 Added Features
 Instructions to support multimedia operations

 Instructions to enable more efficient conditional operations

 Transition from 32 bits to 64 bits

 More cores

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2015 State of the Art
 Core i7 Broadwell 2015

 Desktop Model
 4 cores

 Integrated graphics

 3.3-3.8 GHz

 65W

 Server Model
 8 cores

 Integrated I/O

 2-2.6 GHz

 45W



2

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86 Clones: Advanced Micro Devices 
(AMD)
 Historically

AMD has followed just behind Intel

A little bit slower, a lot cheaper

 Then
 Recruited top circuit designers from Digital Equipment Corp. and 

other downward trending companies

 Built Opteron: tough competitor to Pentium 4

Developed x86-64, their own extension to 64 bits

 Recent Years

 Intel got its act together

 Leads the world in semiconductor technology

AMD has fallen behind

 Spun off its semiconductor factories

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel’s 64-Bit History
 2001: Intel Attempts Radical Shift from IA32 to IA64

 Totally different architecture (Itanium)

 Executes IA32 code only as legacy

 Performance disappointing

 2003: AMD Steps in with Evolutionary Solution
 x86-64 (now called “AMD64”)

 Intel Felt Obligated to Focus on IA64

 Hard to admit mistake or that AMD is better

 2004: Intel Announces EM64T extension to IA32

 Extended Memory 64-bit Technology (now called “Intel 64”)

 Almost identical to x86-64!

 All but lowest-end x86 processors support x86-64
 But, lots of code still runs in 32-bit mode

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Our Coverage

 IA32

 The traditional x86

 For 2021: RIP, Summer 2015

 x86-64

 The standard

 cselabs> gcc hello.c

 cselabs> gcc –m64 hello.c

 Presentation
 Book covers x86-64

 Web aside on IA32

 We will only cover x86-64

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Machine Programming I: Basics

 History of Intel processors and architectures

 C, assembly, machine code

 Assembly Basics: Registers, operands, move

 Arithmetic & logical operations

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Definitions

 Architecture: (also ISA: instruction set architecture) The 
parts of a processor design that one needs to understand 
or write assembly/machine code. 
 Examples: instruction set specification, registers.

 Microarchitecture: Implementation of the architecture.
 Examples: cache sizes and core frequency.

 Code Forms:

 Machine Code: The byte-level programs that a processor executes

 Assembly Code: A text representation of machine code

 Example ISAs: 

 Intel: x86, IA32, Itanium, x86-64

 ARM: Used in almost all smartphones

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CPU

Assembly/Machine Code View

Programmer-Visible State

 PC: Program counter

 Address of next instruction

 On x86-64, called “RIP”

 Register file
 Heavily used program data

 Condition codes

 Store status information about most recent 
arithmetic or logical operation

 Used for conditional branching

PC

Registers

Memory

Code
Data
Stack

Addresses

Data

InstructionsCondition
Codes

 Memory

 Byte addressable array

 Code and user data

 Stack to support procedures



3

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries 
(.a)

Turning C into Object Code
 Code in files p1.c p2.c

 Compile with command: gcc –Og p1.c p2.c -o p

 Use basic optimizations (-Og) [New since GCC 4.8]

 Put resulting binary in file p

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compiling Into Assembly
C Code (sum.c)

long plus(long x, long y); 

void sumstore(long x, long y, 

long *dest)

{

long t = plus(x, y);

*dest = t;

}

Generated x86-64 Assembly

sumstore:

pushq %rbx

movq %rdx, %rbx

call    plus

movq %rax, (%rbx)

popq %rbx

ret

Obtain (on Ubuntu 14.04 machine) with command

gcc –Og –S sum.c

Produces file sum.s

Note: You may get different results on different machines 
(older Linux, Mac OS X, …) due to different versions of gcc
and different compiler settings.

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Characteristics: Data Types

 “Integer” data of 1, 2, 4, or 8 bytes

 Data values

 Addresses (untyped pointers)

 Floating point data of 4, 8, or 10 bytes

 Code: Byte sequences encoding series of instructions

 No aggregate types such as arrays or structures
 Just contiguously allocated bytes in memory

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Characteristics: Operations

 Perform arithmetic function on register or memory data

 Transfer data between memory and register
 Load data from memory into register

 Store register data into memory

 Transfer control
 Unconditional jumps to/from procedures

 Conditional branches

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code for sumstore

0x0400595: 

0x53

0x48

0x89

0xd3

0xe8

0xf2

0xff

0xff

0xff

0x48

0x89

0x03

0x5b

0xc3

Object Code

 Assembler
 Translates .s into .o

 Binary encoding of each instruction

 Nearly-complete image of executable code

 Missing linkages between code in different 
files

 Linker

 Resolves references between files

 Combines with static run-time libraries

 E.g., code for malloc, printf

 Some libraries are dynamically linked

 Linking occurs when program begins 
execution

• Total of 14 bytes

• Each instruction 
1, 3, or 5 bytes

• Starts at address 
0x0400595

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine Instruction Example
 C Code

 Store value t where designated by 
dest

 Assembly
 Move 8-byte value to memory

 Quad words in Intel parlance

 Operands:

t: Register %rax

dest: Register %rbx

*dest: MemoryM[%rbx]

 Object Code
 3-byte instruction

 Stored at address 0x40059e

*dest = t;

movq %rax, (%rbx)

0x40059e:  48 89 03



4

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disassembled

Disassembling Object Code

 Disassembler
objdump –d sum

 Useful tool for examining object code

 Analyzes bit pattern of series of instructions

 Produces approximate rendition of assembly code

 Can be run on either a.out (complete executable) or .o file

0000000000400595 <sumstore>:

400595:  53               push   %rbx

400596:  48 89 d3         mov %rdx,%rbx

400599:  e8 f2 ff ff ff callq 400590 <plus>

40059e:  48 89 03         mov %rax,(%rbx)

4005a1:  5b               pop    %rbx

4005a2:  c3               retq

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disassembled

Dump of assembler code for function sumstore:

0x0000000000400595 <+0>: push   %rbx

0x0000000000400596 <+1>: mov %rdx,%rbx

0x0000000000400599 <+4>: callq 0x400590 <plus>

0x000000000040059e <+9>: mov %rax,(%rbx)

0x00000000004005a1 <+12>:pop    %rbx

0x00000000004005a2 <+13>:retq

Alternate Disassembly

 Within gdb Debugger
% gdb sum

(gdb) disassemble sumstore

 Disassemble procedure

(gdb) x/14xb sumstore

 Examine the 14 bytes starting at sumstore

Object
0x0400595: 

0x53

0x48

0x89

0xd3

0xe8

0xf2

0xff

0xff

0xff

0x48

0x89

0x03

0x5b

0xc3

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Can be Disassembled?

 Anything that can be interpreted as executable code

 Disassembler examines bytes and reconstructs assembly source

% objdump -d WINWORD.EXE

WINWORD.EXE:  file format pei-i386

No symbols in "WINWORD.EXE".

Disassembly of section .text:

30001000 <.text>:

30001000:  55             push   %ebp

30001001:  8b ec mov %esp,%ebp

30001003:  6a ff         push   $0xffffffff

30001005:  68 90 10 00 30 push   $0x30001090

3000100a:  68 91 dc 4c 30 push   $0x304cdc91

Legal note: reverse engineering of 
commercial software is often forbidden by 
license agreements, and its status under 
statute varies by jurisdiction

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: x86 Assembly Formats

 This class uses “AT&T” format, which is standard for 
Unix/Linux x86(-64) systems
 Similar to historic Unix all the way back to PDP-11

 Intel’s own documentation, and Windows, use a different 
“Intel” syntax
 Many arbitrary differences, but more internally consistent

AT&T syntax Intel syntax

Destination is last operand Destination is first operand

Size suffixes like “l” in movl Size on memory operands (“DWORD PTR”)

“%” on register names Just letters in register names

“$” on immediate values Just digits in immediates

Addressing modes with (,) Addressing modes with [ + * ]

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Machine Programming I: Basics

 History of Intel processors and architectures

 C, assembly, machine code

 Assembly Basics: Registers, operands, move

 Arithmetic & logical operations

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

%rsp

x86-64 Integer Registers

 Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp



5

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some History: IA32 Registers

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
n

e
ra

l p
u

rp
o

se

accumulate

counter

data

base

source 

index

destination

index

stack 

pointer

base

pointer

Origin
(mostly obsolete)

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Moving Data
 Moving Data

movq Source, Dest:

 Operand Types
 Immediate: Constant integer data

 Example: $0x400, $-533

 Like C constant, but prefixed with ‘$’

 Encoded with 1, 2, or 4 bytes

 Register: One of 16 integer registers

 Example: %rax, %r13

 But %rsp reserved for special use

 Some others have special uses for particular instructions

 Memory: 8 consecutive bytes of memory at address given by register

 Simplest example: (%rax)

 Various other “address modes”

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

movq Operand Combinations

Cannot do memory-memory transfer with a single instruction

movq

Imm

Reg

Mem

Reg

Mem

Reg

Mem

Reg

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src,Dest

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory Addressing Modes

 Normal (R) Mem[Reg[R]]

 Register R specifies memory address

 Like pointer dereferencing in C

movq (%rcx),%rax

 Displacement D(R) Mem[Reg[R]+D]

 Register R specifies start of memory region

 Constant displacement D specifies offset

movq 8(%rbp),%rdx

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of Simple Addressing Modes

void swap

(long *xp, long *yp) 

{

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

}

swap:

movq    (%rdi), %rax

movq    (%rsi), %rdx

movq    %rdx, (%rdi)

movq    %rax, (%rsi)

ret

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

%rdi

%rsi

%rax

%rdx

Understanding Swap()

void swap

(long *xp, long *yp) 

{

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

}

Memory

Register Value

%rdi xp

%rsi yp

%rax t0

%rdx t1

swap:

movq    (%rdi), %rax  # t0 = *xp  

movq    (%rsi), %rdx  # t1 = *yp

movq    %rdx, (%rdi)  # *xp = t1

movq    %rax, (%rsi)  # *yp = t0

ret

Registers



6

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers
Memory

swap:

movq    (%rdi), %rax  # t0 = *xp  

movq    (%rsi), %rdx  # t1 = *yp

movq    %rdx, (%rdi)  # *xp = t1

movq    %rax, (%rsi)  # *yp = t0

ret

0x120 

0x118

0x110 

0x108 

0x100 

Address

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

Registers
Memory

swap:

movq    (%rdi), %rax  # t0 = *xp  

movq    (%rsi), %rdx  # t1 = *yp

movq    %rdx, (%rdi)  # *xp = t1

movq    %rax, (%rsi)  # *yp = t0

ret

0x120 

0x118

0x110 

0x108 

0x100 

Address

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:

movq    (%rdi), %rax  # t0 = *xp  

movq    (%rsi), %rdx  # t1 = *yp

movq    %rdx, (%rdi)  # *xp = t1

movq    %rax, (%rsi)  # *yp = t0

ret

0x120 

0x118

0x110 

0x108 

0x100 

Address

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Swap()

456

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:

movq    (%rdi), %rax  # t0 = *xp  

movq    (%rsi), %rdx  # t1 = *yp

movq    %rdx, (%rdi)  # *xp = t1

movq    %rax, (%rsi)  # *yp = t0

ret

0x120 

0x118

0x110 

0x108 

0x100 

Address

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Swap()

456

123

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:

movq    (%rdi), %rax  # t0 = *xp  

movq    (%rsi), %rdx  # t1 = *yp

movq    %rdx, (%rdi)  # *xp = t1

movq    %rax, (%rsi)  # *yp = t0

ret

0x120 

0x118

0x110 

0x108 

0x100 

Address

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complete Memory Addressing Modes

 Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
 D: Constant “displacement” 1, 2, or 4 bytes

 Rb: Base register: Any of 16 integer registers

 Ri: Index register: Any, except for %rsp

 S: Scale: 1, 2, 4, or 8 (why these numbers?)

 Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]

D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]

(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]



7

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Address Computation Examples

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

%rdx 0xf000

%rcx 0x0100

https://chimein.cla.umn.edu/course/view/2021

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Address Computation Examples

%rdx 0xf000

%rcx 0x0100

0xf000 + 0x8

0xf000 + 0x100

0xf000 + 4*0x100

2*0xf000 + 0x80

0xf008

0xf100

0xf400

0x1e080

https://chimein.cla.umn.edu/course/view/2021

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logistics announcements

 Exercise set #1 is out now

 Due on paper at the beginning of Monday’s lecture

 HA2 on data operations coming soon

 Continuation of today’s lab

 To be due Friday, October 5th

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Machine Programming I: Basics

 History of Intel processors and architectures

 C, assembly, machine code

 Assembly Basics: Registers, operands, move

 Arithmetic & logical operations

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Computation Instruction

 leaq Src, Dst

 Src is address mode expression

 Set Dst to address denoted by expression

 Uses
 Computing addresses without a memory reference

 E.g., translation of p = &x[i];

 Computing arithmetic expressions of the form x + k*y

 k = 1, 2, 4, or 8

 Example

long m12(long x)

{

return x*12;

}
leaq (%rdi,%rdi,2), %rax # t <- x+x*2

salq $2, %rax # return t<<2

Converted to ASM by compiler:

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Arithmetic Operations

 Two Operand Instructions:

Format Computation

addq Src,Dest Dest = Dest + Src

subq Src,Dest Dest = Dest  Src

imulq Src,Dest Dest = Dest * Src

shlq Src,Dest Dest = Dest << Src Also called salq

sarq Src,Dest Dest = Dest >> Src Arithmetic

shrq Src,Dest Dest = Dest >> Src Logical

xorq Src,Dest Dest = Dest ^ Src

andq Src,Dest Dest = Dest & Src

orq Src,Dest Dest = Dest | Src

 Watch out for argument order!

 No distinction between signed and unsigned int (why?)

https://chimein.cla.umn.edu/course/view/2021
https://chimein.cla.umn.edu/course/view/2021


8

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Arithmetic Operations

 One Operand Instructions
incq Dest Dest = Dest + 1

decq Dest Dest = Dest  1

negq Dest Dest =  Dest

notq Dest Dest = ~Dest

 See book for more instructions

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic Expression Example

Interesting Instructions
 leaq: address computation

 salq: shift

 imulq: multiplication

 But, only used once

long arith

(long x, long y, long z)

{

long t1 = x+y;

long t2 = z+t1;

long t3 = x+4;

long t4 = y * 48;

long t5 = t3 + t4;

long rval = t2 * t5;

return rval;

}

arith:

leaq (%rdi,%rsi), %rax

addq %rdx, %rax

leaq (%rsi,%rsi,2), %rdx

salq $4, %rdx

leaq 4(%rdi,%rdx), %rcx

imulq %rcx, %rax

ret

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Arithmetic Expression 
Example

long arith

(long x, long y, long z)

{

long t1 = x+y;

long t2 = z+t1;

long t3 = x+4;

long t4 = y * 48;

long t5 = t3 + t4;

long rval = t2 * t5;

return rval;

}

arith:

leaq (%rdi,%rsi), %rax # t1

addq %rdx, %rax # t2

leaq (%rsi,%rsi,2), %rdx

salq $4, %rdx # t4

leaq 4(%rdi,%rdx), %rcx # t5

imulq %rcx, %rax # rval

ret

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z

%rax t1, t2, rval

%rdx t4

%rcx t5

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine Programming I: Summary

 History of Intel processors and architectures

 Evolutionary design leads to many quirks and artifacts

 C, assembly, machine code

 New forms of visible state: program counter, registers, ...

 Compiler must transform statements, expressions, procedures into 
low-level instruction sequences

 Assembly Basics: Registers, operands, move
 The x86-64 move instructions cover wide range of data movement 

forms

 Arithmetic

 C compiler will figure out different instruction combinations to 
carry out computation


