Cache Memories

CSci 2021: Machine Architecture and Organization
November 7th-9th, 2016

Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O’Hallaron

Today

- Cache memory organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Example Memory Hierarchy

CPU registers hold words retrieved from the L1 cache.

L1 cache (SRAM)

L2 cache (SRAM)

L3 cache (SRAM)

Main memory (DRAM)

Local secondary storage

Remote secondary storage

Register file

ALU

System bus

Memory bus

Cache Memories

- Cache memories are small, fast SRAM-based memories managed automatically in hardware
 - Hold frequently accessed blocks of main memory
- CPU looks first for data in cache
- Typical system structure:

General Cache Concept

Smaller, faster, more expensive memory caches a subset of the blocks

Data is copied in block-sized transfer units

Larger, slower, cheaper memory viewed as partitioned into "blocks"

General Cache Organization (S, E, B)

Cache size: $C = S \times E \times B$ data bytes

E = 2^e lines per set

S = 2^s sets

B = 2^b bytes per cache block (the data)
Cache Read

E = 2 lines per set
S = 2^s sets
B = 2^b bytes per cache block (the data)

Address of word:
1 bits + b bits = s bits

Valid bit

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Direct-Mapped Cache Simulation

M=16 bytes (4-bit addresses), B=2 bytes/block, S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [0000], miss
1 [0001], hit
7 [0111], miss
0 [0000], miss

v Tag Block
Set 0 1 0 M[0-1]
Set 1
Set 2
Set 3 1 0 M[5-7]
E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

2-way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000], miss
1 [0001], hit
7 [0111], miss
8 [1000], miss
0 [0000], hit

What about writes?

- Multiple copies of data exist:
 - L1, L2, L3, Main Memory, Disk

- What to do on a write-hit?
 - Write-through (write immediately to memory)
 - Write-back (defer write to memory until replacement of line)
 - Need a dirty bit (line different from memory or not)

- What to do on a write-miss?
 - Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
 - No-write-allocate (writes straight to memory, does not load into cache)

- Typical
 - Write-through + No-write-allocate
 - Write-back + Write-allocate

Intel Core i7 Cache Hierarchy

L1 i-cache and d-cache:
32 KB, 8-way, Access: 4 cycles
L2 unified cache:
256 KB, 8-way, Access: 10 cycles
L3 unified cache:
8 MB, 16-way, Access: 40-75 cycles

Block size: 64 bytes for all caches.

Cache Performance Metrics

- Miss Rate
 - Fraction of memory references not found in cache (misses / accesses)
 - 1 – hit rate
 - Typical numbers (in percentages):
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

- Hit Time
 - Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache

- Miss Penalty
 - Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)
Let’s think about those numbers

- Huge difference between a hit and a miss
 - Could be 100x, if just L1 and main memory

- Would you believe 99% hits is twice as good as 97%?
 - Consider:
 - cache hit time of 1 cycle
 - miss penalty of 100 cycles
 - Average access time:
 - 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
 - 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

This is why “miss rate” is used instead of “hit rate”

Writing Cache Friendly Code

- Make the common case go fast
 - Focus on the inner loops of the core functions

- Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories

Rows/Columns Example

```c
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}
```

```c
int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (j = 0; j < 16; j++)
        for (i = 0; i < 16; i++)
            sum += a[i][j];
    return sum;
}
```

Ignore the variables sum, i, j

assume: cold (empty) cache, a[0][0] goes here, 2-way set associative

32 B = 4 doubles

Rows/Columns Example

```c
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}
```

```c
int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (j = 0; j < 16; j++)
        for (i = 0; i < 16; i++)
            sum += a[i][j];
    return sum;
}
```

Ignore the variables sum, i, j

assume: cold (empty) cache, a[0][0] goes here, 2-way set associative

32 B = 4 doubles

Rows/Columns Example

```c
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}
```

```c
int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (j = 0; j < 16; j++)
        for (i = 0; i < 16; i++)
            sum += a[i][j];
    return sum;
}
```

Ignore the variables sum, i, j

assume: cold (empty) cache, a[0][0] goes here, 2-way set associative

32 B = 4 doubles

Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Averaging loops to improve spatial locality
 - Using blocking to improve temporal locality
The Memory Mountain

- **Read throughput** (read bandwidth)
 - Number of bytes read from memory per second (MB/s)

- **Memory mountain**: Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.

Memory Mountain Test Function

```c
long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first “elems” elements of *array “data” with stride of “stride”, using
   * using 4x4 loop unrolling.
   */
int test(int elems, int stride) {
    long i, sx2 = stride * 2, sx3 = stride * 3, sx4 = stride * 4;
    long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
    long length = elems, limit = length - sx4;
    /* Combine 4 elements at a time */
    for (i = 0; i < limit; i += sx4) {
        acc0 = acc0 + data[i];
        acc1 = acc1 + data[i+stride];
        acc2 = acc2 + data[i+sx2];
        acc3 = acc3 + data[i+sx3];
    }
    /* Finish any remaining elements */
    for (; i < length; i++) {
        acc0 = acc0 + data[i];
    }
    return ((acc0 + acc1) + (acc2 + acc3));
}
```

Call `test()` with many combinations of `elems` and `stride`.

For each `elems` and `stride`:
1. Call `test()` once to warm up the caches.
2. Call `test()` again and measure the read throughput (MB/s).

Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Matrix Multiplication Example

- **Description**:
 - Multiply N x N matrices
 - Matrix elements are doubles (8 bytes)
 - O(N^3) total operations
 - N reads per source element
 - N values summed per destination
 - but may be able to hold in register

```c
for (i=0; i<n; i++)  {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

Variable `sum` held in register

Miss Rate Analysis for Matrix Multiply

- **Assume**:
 - Block size = 32B (big enough for four doubles)
 - Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
 - Cache is not even big enough to hold multiple rows

- **Analysis Method**:
 - Look at access pattern of inner loop
Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:
 - for \(i = 0; i < N; i++ \)
 - \(\text{sum} += a[0][i]; \)
 - accesses successive elements
 - if block size (B) > sizeof(a[i]) bytes, exploit spatial locality
 - miss rate = sizeof(a[i])/B
- Stepping through rows in one column:
 - for \(i = 0; i < N; i++ \)
 - \(\text{sum} += a[i][0]; \)
 - accesses distant elements
 - no spatial locality!
 - miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

For (\(i=0; i < m \); \(i++ \))
- \(\text{for } (j=0; j < n; j++) \)
 - \(\text{sum } = 0.0; \)
 - \(\text{for } (k=0; k < n; k++) \)
 - \(\text{sum } += a[i][k] * b[k][j]; \)
 - \(c[i][j] = \text{sum}; \)

Misses per inner loop iteration:

\[
\begin{array}{ccc}
0.25 & 1.0 & 0.0 \\
\end{array}
\]

Matrix Multiplication (jik)

For (\(i=0; i < n \); \(i++ \))
- \(\text{for } (j=0; j < n; j++) \)
 - \(\text{for } (k=0; k < n; k++) \)
 - \(r = a[i][k]; \)
 - \(\text{for } (j=0; j < n; j++) \)
 - \(c[i][j] += r * b[k][j]; \)

Misses per inner loop iteration:

\[
\begin{array}{ccc}
0.0 & 0.25 & 0.25 \\
\end{array}
\]

Matrix Multiplication (ikj)

For (\(i=0; i < n \); \(i++ \))
- \(\text{for } (k=0; k < n; k++) \)
 - \(\text{for } (j=0; j < n; j++) \)
 - \(e[i][j] += r * b[k][j]; \)

Matrix Multiplication (jki)

For (\(j=0; j < n \); \(j++ \))
- \(\text{for } (k=0; k < n; k++) \)
 - \(\text{for } (i=0; i < n; i++) \)
 - \(e[i][j] += a[i][k] * r; \)

Misses per inner loop iteration:

\[
\begin{array}{ccc}
1.0 & 0.0 & 1.0 \\
\end{array}
\]
Matrix Multiplication (kji)

```
/* kji */
for (k=0; k<n; k++) {
    for (j=0; j<n; j++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Summary of Matrix Multiplication

```
For (ijk, ikj, jik):
• 2 loads, 0 stores
• misses/iter = 1.25
```

```
For (kji, ikj, jki):
• 2 loads, 1 store
• misses/iter = 0.5
```

```
For (ji & kj):
• 2 loads, 1 store
• misses/iter = 2.0
```

Example: Matrix Multiplication

```
c = (double *) calloc(sizeof(double), n*n);
/* Multiply n x n matrices a and b */
void mm2(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
            c[i*n + j] = a[i*n + k] * b[k*n + j];
}
```

Cache Miss Analysis

Assume:
- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

First iteration:
- n/8 + n = 9n/8 misses
- Afterwards in cache: (schematic)

Today

- Cache organization and operation
- Performance impact of caches
 - the memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Core i7 Matrix Multiply Performance

```
c = (double *) calloc(sizeof(double), n*n);
/* Multiply n x n matrices a and b */
void mm2(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
            c[i*n + j] = a[i*n + k] * b[k*n + j];
}
```
Cache Miss Analysis

- **Assume:**
 - Matrix elements are doubles
 - Cache block = 8 doubles
 - Cache size C \(<<\) n (much smaller than n)

- **Second iteration:**
 - Again:
 - \(n/8 + n = 9n/8\) misses

- **Total misses:**
 - \(9n/8 \times n = (9/8) \times n^2\)

Blocked Matrix Multiplication

```c
// c = (double *) malloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mm(double *a, double *b, double *c, int n) {
  for (i = 0; i < n; i++)
    for (j = 0; j < n; j++)
      for (k = 0; k < n; k++)
        c[i*n+j] += a[i*n+k] * b[k*n + j];
}
```

Cache Miss Analysis

- **Assume:**
 - Cache block = 8 doubles
 - Cache size C \(<<\) n (much smaller than n)
 - Three blocks fit into cache: \(3B^2 < C\)

- **First (block) iteration:**
 - \(B^2/8\) misses for each block
 - \(2n/B \times B^2/8 = nb/4\) (omitting matrix c)

- **Second (block) iteration:**
 - Same as first iteration

- **Total misses:**
 - \(nb/4 \times (n/9)^2 = n^3/(4B)\)

Blocking Summary

- No blocking: \((9/8) \times n^3\)
- Blocking: \(1/(4B) \times n^3\)

- Suggest largest possible block size B, but limit \(3B^2 < C\)!

- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: \(3n^2\), computation \(2n^3\)
 - Every array elements used \(O(n)\) times!
 - But program has to be written properly

Cache Summary

- Cache memories can have significant performance impact

- You can write your programs to exploit this!
 - Focus on the inner loops, where bulk of computations and memory accesses occur.
 - Try to maximize spatial locality by reading data objects with sequentially with stride 1.
 - Try to maximize temporal locality by using a data object as often as possible once it’s read from memory.