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Program Optimization

CSci 2021: Machine Architecture and Organization
November 12th-21st, 2018

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron
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Today

 Overview

 Generally Useful Optimizations
 Code motion/precomputation

 Strength reduction

 Sharing of common subexpressions

 Removing unnecessary procedure calls

 Optimization Blockers

 Procedure calls

 Memory aliasing

 Exploiting Instruction-Level Parallelism

 Dealing with Conditionals
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Performance Realities

There’s more to performance than asymptotic complexity

 Constant factors matter too!
 Easily see 10:1 performance range depending on how code is written

 Must optimize at multiple levels: 

 algorithm, data representations, procedures, and loops

 Must understand system to optimize performance
 How programs are compiled and executed

 How modern processors + memory systems operate

 How to measure program performance and identify bottlenecks

 How to improve performance without destroying code modularity and 
generality
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Optimizing Compilers
 Provide efficient mapping of program to machine

 register allocation

 code selection and ordering (scheduling)

 dead code elimination

 eliminating minor inefficiencies

 Don’t (usually) improve asymptotic efficiency
 up to programmer to select best overall algorithm

 big-O savings are (often) more important than constant factors

 but constant factors also matter

 Have difficulty overcoming “optimization blockers”

 potential memory aliasing

 potential procedure side-effects
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Limitations of Optimizing Compilers

 Operate under fundamental constraint

 Must not cause any change in program behavior

 Except, possibly when program making use of nonstandard language 
features

 Often prevents it from making optimizations that would only affect behavior 
under pathological conditions.

 Behavior that may be obvious to the programmer can  be obfuscated by 
languages and coding styles

 e.g., Data ranges may be more limited than variable types suggest

 Most analysis is performed only within procedures

 Whole-program analysis is too expensive in most cases

 Newer versions of GCC do interprocedural analysis within individual files

 But, not between code in different files

 Most analysis is based only on static information

 Compiler has difficulty anticipating run-time inputs

 When in doubt, the compiler must be conservative
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Generally Useful Optimizations

 Optimizations that you or the compiler should do regardless 
of processor / compiler

 Code Motion
 Reduce frequency with which computation performed

 If it will always produce same result

 Especially moving code out of loop

long j;

int ni = n*i;

for (j = 0; j < n; j++)

a[ni+j] = b[j];

void set_row(double *a, double *b,

long i, long n)

{

long j;

for (j = 0; j < n; j++)

a[n*i+j] = b[j];

}
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Compiler-Generated Code Motion (-O1)

set_row:

testq %rcx, %rcx # Test n

jle .L1 # If 0, goto done

imulq %rcx, %rdx # ni = n*i

leaq (%rdi,%rdx,8), %rdx # rowp = A + ni*8

movl $0, %eax # j = 0

.L3: # loop:

movsd (%rsi,%rax,8), %xmm0    # t = b[j]

movsd %xmm0, (%rdx,%rax,8)   # M[A+ni*8 + j*8] = t

addq $1, %rax # j++

cmpq %rcx, %rax # j:n

jne .L3 # if !=, goto loop

.L1: # done:

rep ; ret

long j;

long ni = n*i;

double *rowp = a+ni;

for (j = 0; j < n; j++)

*rowp++ = b[j];

void set_row(double *a, double *b,

long i, long n)

{

long j;

for (j = 0; j < n; j++)

a[n*i+j] = b[j];

}
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Reduction in Strength

 Replace costly operation with simpler one

 Shift, add instead of multiply or divide

16*x --> x << 4

 Utility machine dependent

 Depends on cost of multiply or divide instruction

– On Intel Nehalem, integer multiply requires 3 CPU cycles

 Most valuable when it can be done within a loop

 “Induction variable” has value linear in loop execution count

for (i = 0; i < n; i++) {

int ni = n*i;

for (j = 0; j < n; j++)

a[ni + j] = b[j];

}

int ni = 0;

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++)

a[ni + j] = b[j];

ni += n;

}
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Share Common Subexpressions
 Reuse portions of expressions

 GCC will do this with –O1

/* Sum neighbors of i,j */

up =    val[(i-1)*n + j  ];

down =  val[(i+1)*n + j  ];

left =  val[i*n     + j-1];

right = val[i*n     + j+1];

sum = up + down + left + right;

long inj = i*n + j;

up =    val[inj - n];

down =  val[inj + n];

left =  val[inj - 1];

right = val[inj + 1];

sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq   1(%rsi), %rax  # i+1

leaq   -1(%rsi), %r8  # i-1

imulq  %rcx, %rsi     # i*n

imulq  %rcx, %rax     # (i+1)*n

imulq  %rcx, %r8      # (i-1)*n

addq   %rdx, %rsi     # i*n+j

addq   %rdx, %rax     # (i+1)*n+j

addq   %rdx, %r8      # (i-1)*n+j

imulq %rcx, %rsi  # i*n

addq %rdx, %rsi  # i*n+j

movq %rsi, %rax  # i*n+j

subq %rcx, %rax  # i*n+j-n

leaq (%rsi,%rcx), %rcx # i*n+j+n
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 Procedure to Convert String to Lower Case

 Extracted from CMU 213 lab submissions, Fall, 1998

 Similar pattern seen in UMN HA1

void lower(char *s)

{

size_t i;

for (i = 0; i < strlen(s); i++)

if (s[i] >= 'A' && s[i] <= 'Z')

s[i] -= ('A' - 'a');

}

Optimization Blocker #1: Procedure Calls
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Lower Case Conversion Performance

 Time quadruples when double string length

 Quadratic performance
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Convert Loop To Goto Form

 strlen executed every iteration

void lower(char *s)

{

size_t i = 0;

if (i >= strlen(s))

goto done;

loop:

if (s[i] >= 'A' && s[i] <= 'Z')

s[i] -= ('A' - 'a');

i++;

if (i < strlen(s))

goto loop;

done:

}



3

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Calling Strlen

 Strlen performance
 Only way to determine length of string is to scan its entire length, looking for 

null character.

 Overall performance, string of length N
 N calls to strlen

 Require times N, N-1, N-2, …, 1

 Overall O(N2) performance

/* My version of strlen */

size_t strlen(const char *s)

{

size_t length = 0;

while (*s != '\0') {

s++; 

length++;

}

return length;

}
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Improving Performance

 Move call to strlen outside of loop

 Since result does not change from one iteration to another

 Form of code motion

void lower(char *s)

{

size_t i;

size_t len = strlen(s);

for (i = 0; i < len; i++)

if (s[i] >= 'A' && s[i] <= 'Z')

s[i] -= ('A' - 'a');

}
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Lower Case Conversion Performance

 Time doubles when double string length

 Linear performance of lower2
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Optimization Blocker: Procedure Calls
 Why couldn’t compiler move strlen out of  inner loop?

 Procedure may have side effects

 Alters global state each time called

 Function may not return same value for given arguments

 Depends on other parts of global state

 Procedure lower could interact with strlen

 Warning:

 Compiler treats procedure call as a black box

 Weak optimizations near them

 Remedies:

 Use of inline functions

 GCC does this with –O1

– Within single file

– But doesn’t help here

 Do your own code motion

size_t lencnt = 0;

size_t strlen(const char *s)

{

size_t length = 0;

while (*s != '\0') {

s++; length++;

}

lencnt += length;

return length;

}
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What About Larger Programs?

 If your program has just one loop, it’s obvious where to 
change to make it go faster

 In more complex programs, what to optimize is a key 
question

 When you first write a non-trivial program, it often has a 
single major algorithm performance problem
 Textbook’s example: insertion sort

 A program I wrote recently: missed opportunity for dynamic 
programming

 Fixing this problem is way more important than any other changes 
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Amdahl’s Law

 If you speed up one part of a system, the total benefit is 
limited by how much time that part took to start with

 Speedup S is:

𝑺 =
𝟏

𝟏 − 𝜶 + 𝜶/𝒌

where the acceleration factor is k and the original time 
fraction is 𝜶.

 Limiting case: even if k is effectively infinite, the upper 
limit on speedup is

𝑺∞ =
𝟏

(𝟏 − 𝜶)
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Knowing What’s Slow: Profiling

 Profiling makes a version of a program that records how 
long it spends on different tasks
 Use to find bottlenecks, at least in typical operation

 Common Linux tools:
 gprof: GCC flag plus a tool to interpret output of the profiled 

program

 Counts functions and randomly samples for time

 Discussed in textbook’s 5.14.1

 Valgrind callgrind/cachegrind

 Counts everything, precise but slow

 OProfile

 Uses hardware performance counters, can be whole-system
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Exercise Break: Weird Pointers

 Can the following function ever return 12, and if so how?

int f(int *p1, int *p2, int *p3) {

*p1 = 100;

*p2 = 10;

*p3 = 1;

return *p1 + *p2 + *p3;

}

int a, b;

f(&a, &b, &a);

 Yes, for instance:

https://chimein.cla.umn.edu/course/view/2021

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Matters

 Code updates b[i] on every iteration

 Why couldn’t compiler optimize this away?

# sum_rows1 inner loop

.L4:

movsd (%rsi,%rax,8), %xmm0 # FP load

addsd (%rdi), %xmm0 # FP add

movsd %xmm0, (%rsi,%rax,8) # FP store

addq $8, %rdi

cmpq %rcx, %rdi

jne .L4

/* Sum rows of n X n matrix a

and store in vector b  */

void sum_rows1(double *a, double *b, long n) {

long i, j;

for (i = 0; i < n; i++) {

b[i] = 0;

for (j = 0; j < n; j++)

b[i] += a[i*n + j];

}

}
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Memory Aliasing

 Code updates b[i] on every iteration

 Must consider possibility that these updates will affect program 
behavior

/* Sum rows of n X n matrix a

and store in vector b  */

void sum_rows1(double *a, double *b, long n) {

long i, j;

for (i = 0; i < n; i++) {

b[i] = 0;

for (j = 0; j < n; j++)

b[i] += a[i*n + j];

}

}

double A[9] = 

{ 0,   1,   2,

4,   8,  16},

32,  64, 128};

double B[3] = A+3;

sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init:  [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:
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Removing Aliasing

 No need to store intermediate results

# sum_rows2 inner loop

.L10:

addsd (%rdi), %xmm0 # FP load + add

addq $8, %rdi

cmpq %rax, %rdi

jne .L10

/* Sum rows of n X n matrix a

and store in vector b  */

void sum_rows2(double *a, double *b, long n) {

long i, j;

for (i = 0; i < n; i++) {

double val = 0;

for (j = 0; j < n; j++)

val += a[i*n + j];

b[i] = val;

}

}
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Optimization Blocker: Memory Aliasing

 Aliasing

 Two different memory references specify single location

 Easy to have happen in C

 Since allowed to do address arithmetic

 Direct access to storage structures

 Get in habit of introducing local variables

 Accumulating within loops

 Your way of telling compiler aliasing is impossible

https://chimein.cla.umn.edu/course/view/2021
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Announcements break: HA4, etc.

 HA4 is due tonight. Forum posts today give hints about:

 Using your check function for tracking down problems

 Can I just submit mm-implicit? (Short answer: yes)

 Improving the throughput of realloc

 Making sure to follow directions when submitting

 Midterm 2 seemed hard
 I’ll have more specifics after it has been graded, probably 

Wednesday

 May be some adjustment accounting for both midterms
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Exploiting Instruction-Level Parallelism

 Need general understanding of modern processor design

 Hardware can execute multiple instructions in parallel

 Performance limited by data dependencies

 Simple transformations can yield dramatic performance 
improvement

 Compilers often cannot make these transformations

 Lack of associativity and distributivity in floating-point arithmetic
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Benchmark Example: Data Type for 
Vectors
/* data structure for vectors */

typedef struct{

size_t len;

data_t *data;

} vec;

/* retrieve vector element

and store at val */

int get_vec_element

(*vec v, size_t idx, data_t *val)

{

if (idx >= v->len)

return 0;

*val = v->data[idx];

return 1;

}

len

data

0 1 len-1

Data Types

 Use different declarations 
for data_t

 int

 long

 float

 double
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Benchmark Computation

Data Types

 Use different declarations 
for data_t

 int

 long

 float

 double

Operations

 Use different definitions of 
OP and IDENT

 + / 0

 * / 1

void combine1(vec_ptr v, data_t *dest)

{

long int i;

*dest = IDENT;

for (i = 0; i < vec_length(v); i++) {

data_t val;

get_vec_element(v, i, &val);

*dest = *dest OP val;

}

}

Compute sum or 
product of vector 
elements
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Cycles Per Element (CPE)
 Convenient way to express performance of program that operates on 

vectors or lists

 Length = n

 In our case: CPE = cycles per OP

 T = CPE*n + Overhead
 CPE is slope of line
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Benchmark Performance
void combine1(vec_ptr v, data_t *dest)

{

long int i;

*dest = IDENT;

for (i = 0; i < vec_length(v); i++) {

data_t val;

get_vec_element(v, i, &val);

*dest = *dest OP val;

}

}

Compute sum or 
product of vector 
elements

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 
unoptimized

22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14
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Basic Optimizations

 Move vec_length out of loop

 Avoid bounds check on each cycle

 Accumulate in temporary

void combine4(vec_ptr v, data_t *dest)

{

long i;

long length = vec_length(v);

data_t *d = get_vec_start(v);

data_t t = IDENT;

for (i = 0; i < length; i++)

t = t OP d[i];

*dest = t;

}
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Effect of Basic Optimizations

 Eliminates sources of overhead in loop

void combine4(vec_ptr v, data_t *dest)

{

long i;

long length = vec_length(v);

data_t *d = get_vec_start(v);

data_t t = IDENT;

for (i = 0; i < length; i++)

t = t OP d[i];

*dest = t;

}

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 –O1 10.12 10.12 10.17 11.14

Combine4 1.27 3.01 3.01 5.01
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Modern CPU Design

Execution
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Superscalar Processor

 Definition: A superscalar processor can issue and execute 
multiple instructions in one cycle. The instructions are 
retrieved from a sequential instruction stream and are 
usually scheduled dynamically.

 Benefit: without programming effort, superscalar 
processor can take advantage of the instruction level 
parallelism that most programs have

 Most modern CPUs are superscalar.

 Intel: since Pentium (1993)
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Pipelined Functional Units Stage 1

Stage 2

Stage 3

long mult_eg(long a, long b, long c) {

long p1 = a*b;

long p2 = a*c;

long p3 = p1 * p2;

return p3;

}

 Divide computation into stages

 Pass partial computations from stage to stage

 Stage i can start on new computation once values passed to i+1

 E.g., complete 3 multiplications in 7 cycles, even though each 
requires 3 cycles

Time

1 2 3 4 5 6 7

Stage 1 a*b a*c p1*p2

Stage 2 a*b a*c p1*p2

Stage 3 a*b a*c p1*p2
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Haswell CPU
 8 Total Functional Units

 Multiple instructions can execute in parallel
2 load, with address computation

1 store, with address computation

4 integer

2 FP multiply

1 FP add

1 FP divide

 Some instructions take > 1 cycle, but can be pipelined
Instruction Latency Cycles/Issue

Load / Store 4 1

Integer Multiply 3 1

Integer/Long Divide 3-30 3-30

Single/Double FP Multiply 5 1

Single/Double FP Add 3 1

Single/Double FP Divide 3-15 3-15
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x86-64 Compilation of Combine4

 Inner Loop (Case: Integer Multiply)

.L519: # Loop:

imull (%rax,%rdx,4), %ecx # t = t * d[i]

addq $1, %rdx # i++

cmpq %rdx, %rbp # Compare length:i

jg .L519 # If >, goto Loop

Method Integer Double FP

Operation Add Mult Add Mult

Combine4 1.27 3.01 3.01 5.01

Latency 
Bound

1.00 3.00 3.00 5.00
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Combine4 = Serial Computation (OP = *)

 Computation (length=8)
((((((((1 * d[0]) * d[1]) * d[2]) * d[3]) 

* d[4]) * d[5]) * d[6]) * d[7])

 Sequential dependence
 Performance: determined by latency of OP

*

*

1 d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7
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Loop Unrolling (2x1)

 Perform 2x more useful work per iteration

void unroll2a_combine(vec_ptr v, data_t *dest)

{

long length = vec_length(v);

long limit = length-1;

data_t *d = get_vec_start(v);

data_t x = IDENT;

long i;

/* Combine 2 elements at a time */

for (i = 0; i < limit; i+=2) {

x = (x OP d[i]) OP d[i+1];

}

/* Finish any remaining elements */

for (; i < length; i++) {

x = x OP d[i];

}

*dest = x;

}
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Effect of Loop Unrolling

 Helps integer add

 Achieves latency bound

 Others don’t improve. Why?

 Still sequential dependency

x = (x OP d[i]) OP d[i+1];

Method Integer Double FP

Operation Add Mult Add Mult

Combine4 1.27 3.01 3.01 5.01

Unroll 2x1 1.01 3.01 3.01 5.01

Latency 
Bound

1.00 3.00 3.00 5.00
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Announcements break: midterm stats

4 | 24

4 | 5678999

5 | 01233444

5 | 5566778899

6 | 0011111222223333344

6 | 555667788999

7 | 0001123334

7 | 55567778899999

8 | 0011234

8 | 556789

9 | 134

9 | 6

Midterm 2 (50-100 shown)

5 | 5899

6 | 0133

6 | 7888999

7 | 011122334444

7 | 55567777888999

8 | 0000001122234444

8 | 556666777777888889

9 | 001122222233444

9 | 555668

10| 00

Adjusted combined midterms (50-
100 shown)

Adjustment is +6 to M2 or +3 to 
average
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More announcements

 Midterm 2 solutions are now on the web site

 Exercise Set 4 on caches is posted
 Due in class Wednesday 11/28 a week from today
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Loop Unrolling with Reassociation (2x1a)

 Can this change the result of the computation?

 Yes, for FP. Why?

void unroll2aa_combine(vec_ptr v, data_t *dest)

{

long length = vec_length(v);

long limit = length-1;

data_t *d = get_vec_start(v);

data_t x = IDENT;

long i;

/* Combine 2 elements at a time */

for (i = 0; i < limit; i+=2) {

x = x OP (d[i] OP d[i+1]);

}

/* Finish any remaining elements */

for (; i < length; i++) {

x = x OP d[i];

}

*dest = x;

}

x = (x OP d[i]) OP d[i+1];

Compare to before
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Effect of Reassociation

 Nearly 2x speedup for Int *, FP +, FP *

 Reason: Breaks sequential dependency

 Why is that? (next slide)

x = x OP (d[i] OP d[i+1]);

Method Integer Double FP

Operation Add Mult Add Mult

Combine4 1.27 3.01 3.01 5.01

Unroll 2x1 1.01 3.01 3.01 5.01

Unroll 2x1a 1.01 1.51 1.51 2.51

Latency 
Bound

1.00 3.00 3.00 5.00

Throughput 
Bound

0.50 1.00 1.00 0.50

2 func. units for FP *
2 func. units for load

4 func. units for int +
2 func. units for load
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Reassociated Computation

 What changed:
 Ops in the next iteration can be 

started early (no dependency)

 Overall Performance
 N elements, D cycles latency/op

 (N/2+1)*D cycles:
CPE = D/2*

*

1

*

*

*

d1d0

*

d3d2

*

d5d4

*

d7d6

x = x OP (d[i] OP d[i+1]);

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loop Unrolling with Separate Accumulators 
(2x2)

 Different form of reassociation

void unroll2a_combine(vec_ptr v, data_t *dest)

{

long length = vec_length(v);

long limit = length-1;

data_t *d = get_vec_start(v);

data_t x0 = IDENT;

data_t x1 = IDENT;

long i;

/* Combine 2 elements at a time */

for (i = 0; i < limit; i+=2) {

x0 = x0 OP d[i];

x1 = x1 OP d[i+1];

}

/* Finish any remaining elements */

for (; i < length; i++) {

x0 = x0 OP d[i];

}

*dest = x0 OP x1;

}
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Effect of Separate Accumulators

 Int + makes use of two load units

 2x speedup (over unroll2) for Int *, FP +, FP *

x0 = x0 OP d[i];

x1 = x1 OP d[i+1];

Method Integer Double FP

Operation Add Mult Add Mult

Combine4 1.27 3.01 3.01 5.01

Unroll 2x1 1.01 3.01 3.01 5.01

Unroll 2x1a 1.01 1.51 1.51 2.51

Unroll 2x2 0.81 1.51 1.51 2.51

Latency Bound 1.00 3.00 3.00 5.00

Throughput Bound 0.50 1.00 1.00 0.50
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Separate Accumulators

*

*

1 d1

d3

*

d5

*

d7

*

*

*

1 d0

d2

*

d4

*

d6

x0 = x0 OP d[i];

x1 = x1 OP d[i+1];

 What changed:
 Two independent “streams” of 

operations

 Overall Performance
 N elements, D cycles latency/op

 Should be (N/2+1)*D cycles:
CPE = D/2

 CPE matches prediction!

What Now?
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Unrolling & Accumulating

 Idea

 Can unroll to any degree L

 Can accumulate K results in parallel

 L must be multiple of K

 Limitations
 Diminishing returns

 Cannot go beyond throughput limitations of execution units

 Large overhead for short lengths

 Finish off iterations sequentially
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Unrolling & Accumulating: Double *
 Case

 Intel Haswell

 Double FP Multiplication

 Latency bound: 5.00.  Throughput bound: 0.50 

FP * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 5.01 5.01 5.01 5.01 5.01 5.01 5.01

2 2.51 2.51 2.51

3 1.67

4 1.25 1.26

6 0.84 0.88

8 0.63

10 0.51

12 0.52

A
cc

u
m

u
la

to
rs
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Unrolling & Accumulating: Int +
 Case

 Intel Haswell

 Integer addition

 Latency bound: 1.00.  Throughput bound: 1.00 

FP * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 1.27 1.01 1.01 1.01 1.01 1.01 1.01

2 0.81 0.69 0.54

3 0.74

4 0.69 1.24

6 0.56 0.56

8 0.54

10 0.54

12 0.56

A
cc

u
m

u
la

to
rs
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Achievable Performance

 Limited only by throughput of functional units

 Up to 42X improvement over original, unoptimized code

Method Integer Double FP

Operation Add Mult Add Mult

Best 0.54 1.01 1.01 0.52

Latency Bound 1.00 3.00 3.00 5.00

Throughput Bound 0.50 1.00 1.00 0.50
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Programming with AVX2
YMM Registers

 16 total, each 32 bytes

 32 single-byte integers

 16 16-bit integers

 8 32-bit integers

 8 single-precision floats

 4 double-precision floats

 1 single-precision float

 1 double-precision float
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SIMD Operations
 SIMD Operations: Single Precision

 SIMD Operations: Double Precision

+ + + +

%ymm0

%ymm1

vaddpd %ymm0, %ymm1, %ymm1

%ymm0

%ymm1

vaddsd %ymm0, %ymm1, %ymm1

+ + + + + + + +
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Using Vector Instructions

 Make use of AVX Instructions

 Parallel operations on multiple data elements

 See Web Aside OPT:SIMD on CS:APP web page

Method Integer Double FP

Operation Add Mult Add Mult

Scalar Best 0.54 1.01 1.01 0.52

Vector Best 0.06 0.24 0.25 0.16

Latency Bound 0.50 3.00 3.00 5.00

Throughput Bound 0.50 1.00 1.00 0.50

Vec Throughput 
Bound

0.06 0.12 0.25 0.12
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 Challenge

 Instruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep EU busy

When encounters conditional branch, cannot reliably determine where to 
continue fetching

404663:  mov $0x0,%eax

404668:  cmp (%rdi),%rsi

40466b:  jge 404685

40466d:  mov 0x8(%rdi),%rax

. . .

404685:  repz retq

What About Branches?

Executing

How to continue?
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Modern CPU Design

Execution

Functional
Units

Instruction Control

Branch Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates
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Branch Outcomes
When encounter conditional branch, cannot determine where to continue 

fetching

 Branch Taken: Transfer control to branch target

 Branch Not-Taken: Continue with next instruction in sequence

 Cannot resolve until outcome determined by branch/integer unit

Branch Taken

Branch Not-Taken

404663:  mov $0x0,%eax

404668:  cmp (%rdi),%rsi

40466b:  jge 404685

40466d:  mov 0x8(%rdi),%rax

. . .

404685:  repz retq
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Branch Prediction
 Idea

 Guess which way branch will go

 Begin executing instructions at predicted position

 But don’t actually modify register or memory data

Predict Taken

Begin
Execution

404663:  mov $0x0,%eax

404668:  cmp (%rdi),%rsi

40466b:  jge 404685

40466d:  mov 0x8(%rdi),%rax

. . .

404685:  repz retq
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401029: vmulsd (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029

401029: vmulsd (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029

401029: vmulsd (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029

Branch Prediction Through Loop
401029: vmulsd (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume 
vector length = 100

Read 
invalid 
location

Executed

Fetched
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401029: vmulsd (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029

401029: vmulsd (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029

401029: vmulsd (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029

401029: vmulsd (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume 
vector length = 100

Branch Misprediction Invalidation

Invalidate
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Branch Misprediction Recovery

 Performance Cost

 Multiple clock cycles on modern processor

 Can be a major performance limiter

401029:  vmulsd (%rdx),%xmm0,%xmm0

40102d:  add $0x8,%rdx

401031:  cmp %rax,%rdx

401034:  jne 401029

401036:  jmp 401040

. . .

401040:  vmovsd %xmm0,(%r12)

i = 99 Definitely not taken

Reload
Pipeline
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Effect of Branch Prediction: Good News
 Loops

 Typically, only miss when 
hit loop end

 Checking code
 Reliably predicts that error 

won’t occur

void combine4b(vec_ptr v,

data_t *dest)

{

long int i;

long int length = vec_length(v);

data_t acc = IDENT;

for (i = 0; i < length; i++) {

if (i >= 0 && i < v->len) {

acc = acc OP v->data[i];

}

}

*dest = acc;

}

Method Integer Double FP

Operation Add Mult Add Mult

Combine4 2.0 3.0 3.0 5.0

Combine4b 4.0 4.0 4.0 5.0
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Branch Prediction: Bad News

 Some program branches are inherently unpredictable

 E.g., if based on input data, binary search tree, etc.

 Indirect jumps are also often hard to predict

 These can be a major performance bottleneck
 Misprediction penalty is typically 10-20 cycles

 Partial solution: write code to be compiled to conditional 
moves
 For GCC: use math and ? : instead of if

 Textbook gives min/max and mergesort examples
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Getting High Performance

 Good compiler and flags

 Don’t do anything stupid
 Watch out for hidden algorithmic inefficiencies

 Write compiler-friendly code

 Watch out for optimization blockers: 
procedure calls & memory references

 Look carefully at innermost loops (where most work is done)

 Tune code for machine

 Exploit instruction-level parallelism

 Avoid unpredictable branches

 Make code cache friendly (Covered later in course)


