
1

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow:
Exceptions and Processes

CSci 2021: Machine Architecture and Organization
December 3rd, 2018

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

 Processors do only one thing:

 From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

 This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Altering the Control Flow

 Up to now: two mechanisms for changing control flow:

 Jumps and branches

 Call and return

React to changes in program state

 Insufficient for a useful system:
Difficult to react to changes in system state
 Data arrives from a disk or a network adapter

 Instruction divides by zero

 User hits Ctrl-C at the keyboard

 System timer expires

 System needs mechanisms for “exceptional control flow”

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow

 Exists at all levels of a computer system

 Low level mechanisms
 1. Exceptions

 Change in control flow in response to a system event
(i.e., change in system state)

 Implemented using combination of hardware and OS software

 Higher level mechanisms
 2. Process context switch

 Implemented by OS software and hardware timer

 3. Signals

 Implemented by OS software

 4. Nonlocal jumps: setjmp() and longjmp()

 Implemented by C runtime library

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

2

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptions

 An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)
 Kernel is the memory-resident part of the OS

 Examples of events: Divide by 0, arithmetic overflow, page fault, I/O
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
1

2
...

n-1

Exception Tables

 Each type of event has a
unique exception number k

 k = index into exception table
(a.k.a. interrupt vector)

 Handler k is called each time
exception k occurs

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Asynchronous Exceptions (Interrupts)

 Caused by events external to the processor

 Indicated by setting the processor’s interrupt pin

 Handler returns to “next” instruction

 Examples:

 Timer interrupt

 Every few ms, an external timer chip triggers an interrupt

 Used by the kernel to take back control from user programs

 I/O interrupt from external device

 Hitting Ctrl-C at the keyboard

 Arrival of a packet from a network

 Arrival of data from a disk

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronous Exceptions
 Caused by events that occur as a result of executing an

instruction:
 Traps

 Intentional

 Examples: system calls, breakpoint traps, special instructions

 Returns control to “next” instruction

 Faults

 Unintentional but possibly recoverable

 Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

 Either re-executes faulting (“current”) instruction or aborts

 Aborts

 Unintentional and unrecoverable

 Examples: illegal instruction, parity error, machine check

 Aborts current program

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each x86-64 system call has a unique ID number

 Examples:

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Example: Opening File
 User calls: open(filename, options)

 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

...

e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2

e5d7e: 0f 05 syscall # Return value in %rax

e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax

...

e5dfa: c3 retq

User code Kernel code

Exception

Open file

Returns

syscall
cmp

 %rax contains syscall number

 Other arguments in %rdi,
%rsi, %rdx, %r10, %r8, %r9

 Return value in %rax

 Negative value is an error
corresponding to negative
errno

3

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Page Fault
 User writes to memory location

 That portion (page) of user’s memory
is currently on disk

int a[1000];

main ()

{

a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault

Copy page from
disk to memory

Return and
reexecute movl

movl

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Invalid Memory Reference

 Sends SIGSEGV signal to user process

 User process exits with “segmentation fault”

int a[1000];

main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid address

movl

Signal process

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Processes

 Process Control

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes

 Definition: A process is an instance of a running
program.
 One of the most profound ideas in computer science

 Not the same as “program” or “processor”

 Process provides each program with two key
abstractions:

 Logical control flow

 Each program seems to have exclusive use of the CPU

 Provided by kernel mechanism called context switching

 Private address space

 Each program seems to have exclusive use of main
memory.

 Provided by kernel mechanism called virtual memory

CPU
Registers

Memory

Stack

Heap

Code

Data

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The Illusion

 Computer runs many processes simultaneously

 Applications for one or more users

 Web browsers, email clients, editors, …

 Background tasks

 Monitoring network & I/O devices

CPU
Registers

Memory

Stack

Heap

Code

Data

CPU
Registers

Memory

Stack

Heap

Code

Data …

CPU
Registers

Memory

Stack

Heap

Code

Data

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing Example

 Running program “top” on Mac

 System has 123 processes, 5 of which are active

 Identified by Process ID (PID)

4

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Single processor executes multiple processes concurrently
 Process executions interleaved (multitasking)
 Address spaces managed by virtual memory system (later in course)
 Register values for nonexecuting processes saved in memory

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Save current registers in memory

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Schedule next process for execution

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Load saved registers and switch address space (context switch)

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Modern) Reality

 Multicore processors

 Multiple CPUs on single chip

 Share main memory (and some of
the caches)

 Each can execute a separate process

 Scheduling of processors onto
cores done by kernel

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

CPU
Registers

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Processes

 Each process is a logical control flow.

 Two processes run concurrently (are concurrent) if their
flows overlap in time

 Otherwise, they are sequential

 Examples (running on single core):
 Concurrent: A & B, A & C

 Sequential: B & C

Process A Process B Process C

Time

5

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User View of Concurrent Processes

 Control flows for concurrent processes are physically
disjoint in time

 However, we can think of concurrent processes as
running in parallel with each other

Time

Process A Process B Process C

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Context Switching

 Processes are managed by a shared chunk of memory-
resident OS code called the kernel
 Important: the kernel is not a separate process, but rather runs as part

of some existing process.

 Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Processes

 System calls and process startup

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Error Handling

 On error, Linux system-level functions typically return -1 and
set global variable errno to indicate cause.

 Hard and fast rule:

 You must check the return status of every system-level function

 Only exception is the handful of functions that return void

 Example:

if ((pid = fork()) < 0) {

fprintf(stderr, "fork error: %s\n", strerror(errno));

exit(0);
}

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error-reporting functions

 Can simplify somewhat using an error-reporting function:

void unix_error(char *msg) /* Unix-style error */

{

fprintf(stderr, "%s: %s\n", msg, strerror(errno));

exit(0);
}

if ((pid = fork()) < 0)
unix_error("fork error");

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error-handling Wrappers

 We simplify the code we present to you even further by
using Stevens-style error-handling wrappers:

pid_t Fork(void)

{

pid_t pid;

if ((pid = fork()) < 0)

unix_error("Fork error");

return pid;
}

pid = Fork();

6

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve: Loading and Running Programs

 int execve(char *filename, char *argv[], char *envp[])

 Loads and runs in the current process:
 Executable file filename

 Can be object file or script file beginning with #!interpreter
(e.g., #!/bin/bash)

 …with argument list argv

 By convention argv[0]==filename

 …and environment variable list envp

 “name=value” strings (e.g., USER=droh)

 getenv, putenv, printenv

 Overwrites code, data, and stack

 Retains PID, open files and signal context

 Called once and never returns

 …except if there is an error
50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure of
the stack when
a new program
starts

Null-terminated

environment variable strings

Null-terminated

command-line arg strings

envp[n] == NULL

envp[n-1]

...
envp[0]

argv[argc] = NULL

argv[argc-1]

...
argv[0]

Future stack frame for
main

environ

(global var)

Bottom of stack

Top of stack

argv

(in %rsi)

envp

(in %rdx)

Stack frame for
libc_start_main

argc

(in %rdi)

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve Example

envp[n] = NULL

envp[n-1]

envp[0]

…

myargv[argc] = NULL

myargv[2]

myargv[0]

myargv[1]

“/bin/ls”

“-lt”

“/usr/include”

“USER=droh”

“PWD=/usr/droh”

environ

myargv

if ((pid = Fork()) == 0) { /* Child runs program */

if (execve(myargv[0], myargv, environ) < 0) {

printf("%s: Command not found.\n", myargv[0]);

exit(1);

}

}

 Executes “/bin/ls –lt /usr/include” in child process
using current environment:

(argc == 3)

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Exceptions

 Events that require nonstandard control flow

 Generated externally (interrupts) or internally (traps and faults)

 Processes

 At any given time, system has multiple active processes

 Only one can execute at a time on a single core, though

 Each process appears to have total control of
processor + private memory space

