Exceptional Control Flow:
Exceptions and Processes

CSci 2021: Machine Architecture and Organization
December 3rd, 2018

Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O’Hallaron

v G er pective, Third Edition

Control Flow

m Processors do only one thing:

® From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
. in
Time inst,
inst;

inst,
<shutdown>

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Exceptional Control Flow

m Exists at all levels of a computer system

u Low level mechanisms
= 1. Exceptions

= Change in control flow in response to a system event
(i.e., change in system state)

= Implemented using combination of hardware and OS software

n Higher level mechanisms
® 2. Process context switch
= Implemented by OS software and hardware timer
= 3. Signals
= Implemented by OS software
® 4. Nonlocal jumps: setjmp () and Longjmp ()
= Implemented by C runtime library

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today

m Exceptional Control Flow
m Exceptions

m Processes

m Process Control

P pective, Third Edition

Altering the Control Flow

= Up to now: two mechanisms for changing control flow:
®= Jumps and branches
= Call and return
React to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
= Data arrives from a disk or a network adapter
® |nstruction divides by zero
= User hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”

c B pective, Third Edition

Today

m Exceptional Control Flow
m Exceptions

m Processes

m Process Control

C grammer's Perspective, Third Edition

Exceptions

m An exception is a transfer of control to the OS kernel in response

to some event (i.e., change in processor state)
= Kernel is the memory-resident part of the OS

= Examples of events: Divide by 0, arithmetic overflow, page fault, I/0

request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler
* Return to |_current
* Return to |_next
*Abort

v , Comp e pective, Third Edition

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
= |ndicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:
= Timer interrupt
= Every few ms, an external timer chip triggers an interrupt
= Used by the kernel to take back control from user programs
= |/Ointerrupt from external device
= Hitting Ctrl-C at the keyboard
= Arrival of a packet from a network
= Arrival of data from a disk

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

System Calls

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file
57 fork Create process

59 execve Execute a program
60 _exit Terminate process

62 kill Send signal to process

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Exception Tables

Exception
numbers

Code for
exception handler 0

Table 2
exception handler 1
of s

e O [
2 exception handler 2

Code for
exception handler n-1

P pective, Third Edition

Synchronous Exceptions

Each type of event has a
unique exception number k

k = index into exception table
(a.k.a. interrupt vector)

Handler k is called each time
exception k occurs

m Caused by events that occur as a result of executing an

instruction:
= Traps
= Intentional

= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction

® Faults

= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts

= Aborts
= Unintentional and unrecoverable

= Examples: illegal instruction, parity error, machine check

= Aborts current program

 Comp B pective, Third Edition

System Call Example: Opening File

m User calls: open (filename, options)

m Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2

e5d7e: 0f 05 syscall # Return value in S%rax
e5d80: 48 3d 01 £0 £f £ff cmp $OxXEEfFFEEFFEFFEO0L, %rax
eSdfa: c3 retq
User code Kernel code ®m 3%rax contains syscall number
m Other argumentsin $rdi,
syscall Exception $rsi, $rdx, $rl0, $r8, 3r9
cmp . ®m Returnvalue in $rax
Open file
Returns = Negative value is an error

« grammer's Perspective, Third Edition

corresponding to negative
errno

Fault Example: Page Fault

int a[1000];

int a[1000];
main ()
{

a[5000] = 13;

Fault Example: Invalid Memory Reference

[80483p7:

c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault
movl

Detect invalid address

m Sends SIGSEGYV signal to user process
m User process exits with “segmentation fault”

P pective, Third Edition

Processes

m Definition: A process is an instance of a running
program.

= One of the most profound ideas in computer science
= Not the same as “program” or “processor”

m Process provides each program with two key
abstractions:

= Logical control flow

= Each program seems to have exclusive use of the CPU

= Provided by kernel mechanism called context switching
" Private address space

= Each program seems to have exclusive use of main
memory.

= Provided by kernel mechanism called virtual memory

m User writes to memory location ‘;‘ai“ 0
m That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
User code Kernel code
Exception: page fault
movl
Copy page from
Return and disk to memory
reexecute mov/
v , Comp . pective, Third Edition
Today
m Exceptional Control Flow
m Exceptions
m Processes
m Process Control
v . . pective, Third Edition
Multiprocessing: The lllusion
Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data e Data
Code Code Code
CPU CPU CPU

m Computer runs many processes simultaneously

= Applications for one or more users

= Web browsers, email clients, editors, ...

= Background tasks

= Monitoring network & I/O devices

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

 Comp B pective, Third Edition

Multiprocessing Example

X xterm
Pracesses: 123 total. § running. 9 stuck, 109 sleeping, G11 threads
Load fug: 1,03, 1,43, 1,14 CPI) usage: 3,272 user, 5.15¢ sus. 31.56% 1dle
Shareclibe: 576K resident, OF data, OF linkedit,
HenRegionss 27958 total, 1127M resident, 35H private, 494 shared,
Phystfen: 1039 wired, 1374H active, 1062 inactive, 4076 used, 19H free,
Ul: 280G wsize, 1091H Framework vsize, 23075213(1) pageins, GB43367(0) pageouts,
Netuorks: packets: 41045228/115 in, BROBI0SE/TTE aut.
Disks: 17874391/349G read, 12847373/594G uritten,

PID COHMAND ACPU TIHE #TH #U0 #PORT #MREG RPRUT RSHRD RSIZE WPRMT
99217~ Hicrosoft OFf 0,0 L34 4 202 418 21 24 21H
93051 usbmecd 0.0 66 435K 216K 480K GOM

u
85006 iTunesHelper 86 78 7oBR 312K 1124k 43
84288 bash 20 24 224K 73K d8dR 1M
84285 xtern

e X
65933 Microsoft Ex 0,

N LT
& HEERERY
2
2
4
<1
S
2
.

0.0

0,0

0.0

0.2
54751 sleep 0,0
54723 launchdadd 0.0
54727 top E.5 30 29 1416k 216K Z2124K 17H
54713 autonountd 0,0 53 64 BEOK 216K 2184K G3M
54701 oospd 0.0 Bl B4 1268K 2644k 313K GOM
54661 Grab 0.6 222+ 303+ 1S+ ZBH+ dOM+ TSHe
54653 cookied 0,0 336K 22K 4088K d2H
B3R mdwnrber 00 Ry @ 7EORE TMK 1RM AaM

= System has 123 processes, 5 of which are active
= |dentified by Process ID (PID)

c gramm pective, Third Edition

Signal process

Memory

Stack
Heap
Data
Code

11:47:07

VSIZE
FE3H
2420H
24231
2378H
2352H
10671
2370
2408H
2378M
2413
2426M
2556H+
2411

DazaH L

Multiprocessing: The (Traditional) Reality Multiprocessing: The (Traditional) Reality

Memory Memory
: : Stack Stack : : Stack Stack
: Heap : Heap Heap : Heap : Heap Heap
: | Data : Data coo Data ;| Data : Data oo Data
Code | : Code Code i | _Code | : Code Code
: Saved g Saved Saved : Saved g Saved Saved
: registers | : registers registers i Lre isters | : registers registers
' : il
CPU :'f CPU
: | egmen]
= Single processor executes multiple processes concurrently m Save current registers in memory
® Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system (later in course)
= Register values for nonexecuting processes saved in memory
v , Comp @ pective, Third Edition 19 , Comp pective, Third Edition 2
Multiprocessing: The (Traditional) Reality Multiprocessing: The (Traditional) Reality
Memory Memory
Stack : [_Stack Stack Stack ;[Stack | : Stack
Heap ! Heap : Heap Heap ! Heap : Heap
Data : Data D e Data Data : Data D e Data
Code i [_Code | : Code Code i [_Code | : Code
Saved : | Saved : Saved Saved : | Saved : Saved
registers : registers | : registers registers : registers | : registers
'} CPU '} CPU
| (Regiers] | | (Regirs)
m Schedule next process for execution m Load saved registers and switch address space (context switch)
v G e pective, Third Edition 2 Comp g pective, Third Edition 2
Multiprocessing: The (Modern) Reality Concurrent Processes
Memory m Each process is a logical control flow.
Stack i [stack : Stack m Two processes run concurrently (are concurrent) if their
[Heap | :i| Heap | : | Heap | flows overlap in time
Data L Data D e Data a 5
Code i Code i Code m Otherwise, they are sequential
 [saved | i [Saved | : Saved m Examples (running on single core):
i |registers | : : [registers : registers = Concurrent: A& B,A&C
E : = Sequential: B & C
: m Multicore processors
CPU CPU : s Process A Process B Process C

= Multiple CPUs on single chip |

:

H = Share main memory (and some of
the caches -

) Time |

= Each can execute a separate process [

= Scheduling of processors onto |
cores done by kernel

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition) c grammer's Perspective, Third Edition u

User View of Concurrent Processes
m Control flows for concurrent processes are physically

disjoint in time

= However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C
|

Time

v , Comp er pective, Third Edition 2%

Today

Exceptional Control Flow

n

m Exceptions
m Processes
]

System calls and process startup

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Error-reporting functions

m Can simplify somewhat using an error-reporting function:

void unix_error(char *msg) /* Unix-style error */

fprintf(stderr, "%s: %s\n", msg, strerror(errno));
exit(0);

if ((pid = fork()) < 0)
unix_error(“fork error");

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Context Switching

m Processes are managed by a shared chunk of memory-
resident OS code called the kernel

= Important: the kernel is not a separate process, but rather runs as part
of some existing process.

m Control flow passes from one process to another via a
context switch

Process A Process B

user code
kernel code } context switch
Time user code
kernel code } context switch

user code

P pective, Third Edition

System Call Error Handling

= On error, Linux system-level functions typically return -1 and
set global variable errno to indicate cause.

= Hard and fast rule:

= You must check the return status of every system-level function
= Only exception is the handful of functions that return void
m Example:

if (pid = fork()) <0) {
fprintf(stderr, "fork error: %s\n", strerror(errno));
exit(0);

 Comp B pective, Third Edition

Error-handling Wrappers

m We simplify the code we present to you even further by
using Stevens-style error-handling wrappers:

pid_t Fork(void)
{
pid_t pid;
if ((pid = fork()) < 0)

unix_error("Fork error");
return pid;

pid = Fork();

grammer's Perspective, Third Edition

execve: Loading and Running Programs

m int execve(char *filename, char *argv[], char *envp[])
m Loads and runs in the current process:
® Executable file f£ilename

= Can be object file or script file beginning with # ! interpreter
(e.g., #!/bin/bash)

= _.with argument list argv
= By convention argv[0]==filename
= ..and environment variable list envp
= “name=value” strings (e.g., USER=droh)
= getenv, putenv, printenv
m Overwrites code, data, and stack
= Retains PID, open files and signal context
m Called once and never returns
= .except if there is an error
e

, Third Edition

¥ . Z P

execve Example

m Executes “/bin/ls -1t /usr/include” in child process
using current environment:

Structure of
the stack when
a new program
starts

argc
(in $rdi)

Null-terminated
environment variable strings

Bottom of stack

Null-terminated
command-line arg strings

envp[n] == NULL

envp[n-1]

envl};[O]

o

argv[argc] = NULL

argv[argc-1]

I envp
(in $rdx)

arg‘x‘l‘[O]

Stack frame for
libc_start _main

Future stack frame for

Summary

m Exceptions

, Third Edition

Top of stack

= Events that require nonstandard control flow
= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
= Only one can execute at a time on a single core, though

myargv[argc] = NULL
(argc == 3) myargv[2] —— “/usr/include”
myargv[1] —s “-1t”
T myargv [0] ~/bin/1s”
envp[n] = NULL
envp[n-1] —> “PWD=/usr/droh”
envp[0] |——> “USER=droh”
environ

= Each process appears to have total control of
processor + private memory space

exit(1);
}
}

if (pid = Fork()) == 0) { /* Child runs program */
if (execve(myargv[0], myargv, environ) < 0) {
printf("%s: Command not found.\n", myargv[0]);

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

z pective, Third Edition 52

