
CSci 2021: Final Exam Review Lecture
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Abstraction layers (in one slide)

(Electrical Engineering)

CSci 1133, 1933, etc.

CPU architecture (Ch. 4)

Logic design

(Ch. 4)

Data  (Ch. 2)

Representation
Caches

(Ch. 6)
Virtual

Memory

(Ch. 9)

Memory

Allocators

Optimi-

zation

(Ch. 5)

Machine Code

(Ch. 3, 8)
Linking

(Ch. 7)

C

x86-64

Y86-64

HCL

Implementing high-level code (1)

Machine-level code representation
Instructions, operands, flags
Branches and loops
Procedures and calling conventions
Arrays, structs, unions
Buffer overflow attacks

Code optimization
Machine-independent techniques
Instruction-level parallelism

Implementing high-level code (2)

Linking
Symbols, local and global
Libraries and static linking

Dynamic memory allocation
Heap layout and algorithms
Garbage collection
C memory-usage mistakes

What hardware does

Number representation
Bits and bitwise operators
Unsigned and signed integers
Floating point numbers

Memory hierarchy and caches
Disk and memory technologies
Locality and how to use it
Cache parameters and operation
Optimizing cache usage

Virtual memory
Page tables and TLBs
Memory permissions and sharing

Building hardware

Logic design
Boolean functions and combinational circuits
Registers and sequential circuits

CPU architecture
Y86-64 instructions
Control logic and HCL
Sequential Y86-64
Pipelined Y86-64



Outline

Layered course overview

Final exam logistics

Post midterm 2 topics: caches

Post midterm 2 topics: memory

Post midterm 2 topics: optimization

Post midterm 2 topics: linking

Final exam coordinates

Monday, December 17th (in 5 days)

8:00am - 10:00am (2 hours)

B75 Amundson Hall (same room as lecture)

Longer than midterms, but not twice as long
Last year’s was six questions

Topic coverage is comprehensive
About 1/3 on topics after midterm 2
Expect questions that integrate ideas

Exam rules

Begins promptly at 8:00, ends promptly at 10:00

Open-book, open-notes, any paper materials OK

No electronics: no laptops, smartphones,
calculators, etc.

Arithmetic will use easy numbers, but know your
powers of two

Exam strategy suggestions

Writing implement: mechanical pencil plus good
eraser
Make a summary sheet to save flipping though
notes or textbook
Show your work when possible

Do the easiest questions first

Allow time to answer every question

Outline

Layered course overview

Final exam logistics

Post midterm 2 topics: caches

Post midterm 2 topics: memory

Post midterm 2 topics: optimization

Post midterm 2 topics: linking

RAM technologies

SRAM: several (e.g. 6) transistors per bit
Faster
More expensive, less dense
Used for caches

DRAM: one capacitor and transistor per bit
Must be periodically refreshed
Cheaper, more dense
Slower
Used for main memory



Disks and SSDs

(Spinning) hard drives
Highest capacity
Random access time limited by seek and rotation
latencies
Always read or write an entire sector at a time

Solid-state (flash) drives
Technology descended from EEPROMs
Random-access reads are very fast
Can only rewrite by erasing large blocks
Random-access writes require recopying, slower

Spatial and temporal locality

Spatial locality: memory accesses are close
together in location

Best case: sequential accesses

Temporal locality: the same location is accessed
repeatedly close together in time

Set of locations being used is called the working set

Because of locality, different locations have very
different chances of being accessed next

Memory hierarchy

Devices have trade-off between access time
and capacity

Differences of many orders of magnitude

Combine small+fast devices with big+slow ones
in a hierarchy
Because of locality, most uses are in small+fast
device
Must move data between levels

Keeping a copy at a higher level is called caching
First example: caches between CPU core and
memory

Cache parameters

Data is moved in blocks of size B = 2b

Organize cache into S = 2s sets of lines

A set contains E = 2e lines, each of which can
contain one of the same blocks

E = 1: direct mapped
E > 1: E-way set associative
S = 1: fully associative

Total capacity C = S � E � B

b and s also give a division of addresses into
m = t+ s+ b

Cache operations: read

Use s bits as an index to choose a set

Check all lines in the set (hardware: in parallel),
to see if any is valid and has a matching tag
If yes, it’s a hit: block offset indicates which
bytes desired

If not present, it’s a miss
Fetch data from lower level (e.g., main memory)
Insert newly read data, usually evicting another
block

Cache operations: write

Look for a matching line as for a read

If a hit, update contents of cache block
Write-back policy: do not copy to lower levels until
evicted (opposite is write-through)

If a miss, the common write-allocate policy
copies the block into the cache

Exploits locality in write-only accesses



Cache usage optimizations

Overall goals: maximize locality, minimize
working set
Use more compact data representations

Prefer stride-1 data accesses
E.g., for a matrix, iterate over indexes in
outer-to-inner order

Temporally group accesses to the same data
values

For 2-D data, group by blocks (tiles) instead of rows

Outline

Layered course overview

Final exam logistics

Post midterm 2 topics: caches

Post midterm 2 topics: memory

Post midterm 2 topics: optimization

Post midterm 2 topics: linking

Virtual memory structures

Pages are units of data transfer (e.g., 4KB)
Can be in RAM or on disk

Page table maps virtual addresses to physical
pages

For efficiency, use multiple levels

A TLB is a cache for page-table entries

Virtual memory uses

Avoid capacity limits on RAM

Cache data from disk for speed
Demand paging of code

Implement isolation between processes
Separate page tables
User/kernel protections

Share reused data
Executable code, shared libraries

Outline

Layered course overview

Final exam logistics

Post midterm 2 topics: caches

Post midterm 2 topics: memory

Post midterm 2 topics: optimization

Post midterm 2 topics: linking

Principles of optimization

Concentrate on the program parts that run the
most

Amdahl’s law bounds possible speedup
Array-style programs: concentrate on inner loops
Complex programs: use a profiler

Know what the compiler can and can’t do
Compiler can be smart, but is careful about
correctness
Functions and pointers (aliasing) block optimization

Watch out for algorithmic problems



Machine-independent optimizations

Move computations out of loops

Avoid abstract functions in time-critical code

Use temporary variables to reduce memory
operations
Unroll loops to reduce bookkeeping overhead

Avoid unpredictable branching

Instruction-level parallelism

Modern processors are super-scalar
Can do more than one thing at once

And out-of-order
In a different sequence than the original instructions

Multiple functional units, each with different
throughput and latency

Exposing loop parallelism

To reduce latency, avoid a long critical path

Functional unit throughput is an ultimate limit

Unroll to allow optimization between iterations

Techniques to shorten the critical path:
Re-associate associative operators
Replace a single accumulator with multiple parallel
accumulators

Outline

Layered course overview

Final exam logistics

Post midterm 2 topics: caches

Post midterm 2 topics: memory

Post midterm 2 topics: optimization

Post midterm 2 topics: linking

Linking mechanics

Symbols include functions and variables
Some are file-local, stack variables not even
considered

Symbols are resolved to the correct definition
At most one strong definition, or one of many weak
ones

Code is relocated so it runs correctly at its final
address

Libraries

Collections of reusable code

Static libraries
Several .o files grouped together
Only needed files are selected
Copied into executable just like other object files

Dynamic shared libraries: not covered this year


