

Outline	Final exan
Layered course overview	Monday, December
Final exam logistics	8:00am - 10:00am (
Post midterm 2 topics: caches	🖲 B75 Amundson Hall
Post midterm 2 topics: memory	Longer than midterr Last year's was si
Post midterm 2 topics: optimization	Topic coverage is coverage
Post midterm 2 topics: linking	 About 1/3 on topic Expect questions

n coordinates

- 17th (in 5 days)
- (2 hours)
- (same room as lecture)
- ns, but not twice as long x questions
- omprehensive
 - s after midterm 2 that integrate ideas

Exam rules Begins promptly at 8:00, ends promptly at 10:00 Open-book, open-notes, any paper materials OK No electronics: no laptops, smartphones, calculators, etc. Arithmetic will use easy numbers, but know your powers of two

Exam strategy suggestions

- Writing implement: mechanical pencil plus good eraser
- Make a summary sheet to save flipping though notes or textbook
- Show your work when possible
- Do the easiest questions first
- Allow time to answer every question

Spatial and temporal locality

- Spatial locality: memory accesses are close together in location
 - Best case: sequential accesses
- Temporal locality: the same location is accessed repeatedly close together in time
 - Set of locations being used is called the working set
- Because of locality, different locations have very different chances of being accessed next

Outline

Layered course overview

Final exam logistics

Post midterm 2 topics: caches

Post midterm 2 topics: memory

Post midterm 2 topics: optimization

Post midterm 2 topics: linking

Instruction-level parallelism

Modern processors are super-scalar
 Can do more than one thing at once
 And out-of-order
 In a different sequence than the original instructions
 Multiple functional units, each with different throughput and latency

Outline

Layered course overview

Final exam logistics

Post midterm 2 topics: caches

Post midterm 2 topics: memory

Post midterm 2 topics: optimization

Post midterm 2 topics: linking

Linking mechanics

At most one strong definition, or one of many weak ones

Code is relocated so it runs correctly at its final address

