1. (Adapted from textbook problem 2.1-3) Consider the searching problem:
 Input: A sequence of numbers $A = <a_1, a_2, \ldots, a_n>$ and a value v.
 Output: An index i such that $v = A[i]$ or the special value NIL if v does not appear in A.

 a. Write pseudocode for linear search, which scans through the sequence, looking for v.

 b. State precisely a loop invariant for your algorithm, and prove that this loop invariant holds. Recall that proving a loop invariant holds has three components:

 - Initialization: It is true prior to the first iteration of the loop
 - Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
 - Termination: When the loop terminates, the invariant gives us a useful property that helps us prove the algorithm is correct.