Planning (Ch. 10)
Planning

Planning is doing a sequence of actions to achieve one or more goals.

This differs from search in that there are often multiple objectives that must be done.

You can always reduce a planning problem to a search problem, but this is quite often very expensive.
Search

Search: How to get from point A to point B quickly? (Only considering traveling)
Planning

Planning: multiple tasks/subtasks need to be done and in what order? (pack, travel, unpack)
Search vs planning

Searching: finding a single goal
Planning: must complete multiple tasks on the way to an ultimate goal

Search:

Plan:
The book uses Planning Domain Definition Language (PDDL) to represent states/actions.

PDDL is very similar to first order logic in terms of notation (states are now similar to what our knowledge base was).

The large difference is that we need to define actions to move between states.
Planning: assumptions

We make the same 3 assumptions as FO logic:
1. Objects are unique (i.e. \(\neg (\text{Bob} = \text{Jack}) \))

2. All un-said sentences are false
 Thus if I only say: \(\text{Brother}(\text{James}, \text{Bob}) \)
 I also imply: \(\neg \text{Brother}(\text{James}, \text{Jack}) \)

3. Only objects I have specified exists
 (i.e. There is no \(\text{Davis} \) object unless I explicitly use it at some point)
Planning: actions

State = \(BKnight(D, 8) \land BPawn(C, 7) \land BKing(D, 7) \land WPawn(B, 6) \land WKnight(C, 6) \land WRook(E, 6) \land \ldots \land Turn(\text{Black}) \)

Apply: \(MoveBKnight(D, 8) \)

State = \(BKnight(F, 7) \land BPawn(C, 7) \land BKing(D, 7) \land WPawn(B, 6) \land WKnight(C, 6) \land WRook(E, 6) \land \ldots \land Turn(\text{White}) \)
Planning: state

A state is all of the facts ANDed together in FO logic, but are not allowed to have:
1. Variables (otherwise it would not be specific)
2. Functions (just replace them with objects)
3. Negations (as we assume everything not mentioned is false)

State = \(BKnight(D, 8) \land BPawn(C, 7) \land BKing(D, 7) \land WPawn(B, 6) \land WKnight(C, 6) \land WRook(E, 6) \land \ldots \land Turn(Black) \)
Planning: actions

Actions have three parts:
1. Name (similar to a function call)
2. Precondition (requirements to use action)
3. Effect (unmentioned states do not change)

For example:

Action($MoveBKnight1(x, y)$),
Precondition: $BKnight(x, y) \land Turn(Black)$,
Effect: $\neg BKnight(x, y) \land BKnight(x + 2, y - 1) \land \neg Turn(Black) \land Turn(White)$

remove black's turn
Planning: actions

State = \(\textit{BK}\text{night}(D,8) \land \textit{BP}\text{awn}(C,7) \land \textit{BK}\text{ing}(D,7) \land \textit{WP}\text{awn}(B,6) \land \textit{WK}\text{night}(C,6) \land \textit{WR}\text{ook}(E,6) \land \ldots \land \textit{Turn(Black)} \)

Apply: \(\textit{MoveBK}\text{night}(D,8) \)

State = \(\textit{BK}\text{night}(F,7) \land \textit{BP}\text{awn}(C,7) \land \textit{BK}\text{ing}(D,7) \land \textit{WP}\text{awn}(B,6) \land \textit{WK}\text{night}(C,6) \land \textit{WR}\text{ook}(E,6) \land \ldots \land \textit{Turn(White)} \)
Planning: example

Let's look at a grocery store example:

Objects = store locations and food items

Goal = \(\text{At(Checkout)} \land \text{Cart(Milk)} \land \text{Cart(Apples)} \land \text{Cart(Eggs)} \land \text{Cart(ToiletPaper)} \land \text{Cart(Bananas)} \land \text{Cart(Bread)} \land \neg \text{Cart(Candy)} \)

Aisle 1 = Milk, Eggs
Aisle 2 = Apples, Bananas
Aisle 3 = Bread, Candy, ToiletPaper
Planning: example

<table>
<thead>
<tr>
<th>Action</th>
<th>Precondition</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoTo(x, y)</td>
<td>At(x)</td>
<td>¬At(x) (\land) At(y)</td>
</tr>
<tr>
<td>AddApples()</td>
<td>At(Aisle2)</td>
<td>Cart(Apples)</td>
</tr>
<tr>
<td>AddMilk()</td>
<td>At(Aisle1)</td>
<td>Cart(Milk)</td>
</tr>
<tr>
<td>AddBananas()</td>
<td>At(Aisle2)</td>
<td>Cart(Bananas)</td>
</tr>
<tr>
<td>AddEggs()</td>
<td>At(Aisle1)</td>
<td>Cart(Eggs)</td>
</tr>
<tr>
<td>AddBread()</td>
<td>At(Aisle3)</td>
<td>Cart(Bread)</td>
</tr>
<tr>
<td>AddCandy()</td>
<td>At(Aisle3)</td>
<td>Cart(Candy)</td>
</tr>
<tr>
<td>AddToiletPaper()</td>
<td>At(Aisle3)</td>
<td>Cart(ToiletPaper)</td>
</tr>
</tbody>
</table>
Planning: example

Initial state = At(Door)
A possible solution:
1. GoTo(Aisle1) 2. Add(Milk)
3. Add(Eggs) 4. GoTo(Aisle2)
5. Add(Apples) 5. GoTo(Aisle3)
6. Add(Bread) 7. Add(ToiletPaper)
8. GoTo(Aisle2) 8. Add(Bananas)
9. GoTo(Checkout)

Not most efficient, but goal reached
Planning: decidability

Since our planning is similar to FO logic, it is unsurprisingly semi-decidable as well.

Thus, in general you will be able to find a solution if it exists, but possibly be unable to tell if a solution does not exist.

If there are no functions or we know the goal can be found in a finite number of steps, then it is decidable.
If we treat the current state like a knowledge base and actions with \foralls for every variable...

“state entails Precondition(A)” means action A's preconditions are met for the state.

Thus if each action uses v variables, each with k possible values, there are $O(k^v)$ actions (we can ignore actions that do not change the current state in some cases).
Planning: difficulty

PlanSAT tells whether a solution exists or not, but takes PSPACE to tell

If negative preconditions are not allowed, we find a solution in P, and optimal in NP-hard
Again similar to FO logic, there are two basic algorithms you can use to try and plan:

1. **Forward search** - similar to BFS and check all states you can find in 1 action, then 2 actions, then 3... until you find the goal state

2. **Backward search** - start at goal and try to work backwards to initial state
Forward search

Forward search is a brute force search that finds all possible states you can end up in. Each action is tested on each state currently known and is repeated until the goal is found. This can be quite costly, as actions that do not lead to the goal could be repeatedly explored (we will see a way to improve this).
Forward search

GoTo(Door) -> At(Door)
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>can ignore</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

GoTo(Checkout) -> At(Checkout)

AddMilk() -> At(Aisle1)
| Cart(Milk) |
| |

At(Door) -> ...
| At(Aisle1) |
| At(Aisle2) |
| At(Aisle3) |

At(Aisle1) -> ...
| At(Door) |
| At(Aisle1) |

At(Door) -> ...
| At(Aisle1) |
| At(Door) |

At(Checkout) -> ...
| At(Aisle1) |

...
Forward search

You try it!

Initial: $\text{At(Truck, UPSD)} \land \text{Package(UPSD, P1)} \land \text{Package(UPSD, P2)} \land \text{Mobile(Truck)}$

Goal: $\text{Package(H1, P1)} \land \text{Package(H2, P2)}$

Action ($\text{GoTo}(x, y, z)$),

- **Precondition:** $\text{At}(x, y) \land \text{Mobile}(x)$,
- **Effect:** $\neg \text{At}(x, y) \land \text{At}(x, z)$

Action ($\text{Load}(m, x, y)$),

- **Precondition:** $\text{At}(m, y) \land \text{Package}(y, x)$,
- **Effect:** $\neg \text{Package}(y, x) \land \text{Package}(m, x) \land \text{At}(m, y)$

Action ($\text{Deliver}(m, x, y)$),

- **Precondition:** $\text{At}(m, y) \land \text{Package}(m, x)$,
- **Effect:** $\neg \text{Package}(m, x) \land \text{Package}(y, x) \land \text{At}(m, y)$
\[
\text{At(Truck, UPSD) \land Package(UPSD, P1) \land Package(UPSD, P2) \land Mobile(Truck)}
\]
At(Truck, UPSD) \land Package(UPSD, P1) \\
\land Package(UPSD, P2) \land Mobile(Truck)

Action(Load(m, x, y), \\
Precondition: At(m, y) \land Package(y, x), \\
Effect: \neg Package(y, x) \land Package(m, x))
\[
\text{At(Truck, UPSD) } \land \text{ Package(UPSD, P1) } \\
\land \text{ Package(UPSD, P2) } \land \text{ Mobile(Truck)}
\]

Find match
m/Truck
x/P1, y/UPSD

\[
\text{Action(Load(m, x, y),)}
\]

Precondition: \[
\text{At}(m, y) \land \text{Package}(y, x),
\]

Effect: \[
\neg \text{Package}(y, x) \land \text{Package}(m, x)
\]
\[At(Truck, UPSD) \land Package(UPSD, P1) \land Package(UPSD, P2) \land Mobile(Truck) \land Package(Truck, P1) \]

Apply effects

Action(\ Load(Truck, P1, UPSD),
Precondition: \ At(Truck, UPSD) \land Package(UPSD, P1),
Effect: \lnot Package(UPSD, P1) \lor Package(Truck, P1))
Action(Load(Truck, P2, UPSD),
Precondition: At(Truck, UPSD) \land Package(UPSD, P2),
Effect: \neg Package(UPSD, P2) \land Package(Truck, P1))
Action(GoTo(Truck, UPSD, H1),
Precondition: At(Truck, UPSD) \land Mobile(Truck),
Effect: \neg At(Truck, UPSD) \land At(Truck, H1))
Action(Deliver(Truck, P1, H1),
Precondition: At(Truck, H1) \land Package(Truck, P1),
Effect: \neg Package(Truck, P1) \land Package(H1, P1))
At(Truck, H1) \land Package(H1, P1) \\
\land Package(Truck, P2) \land Mobile(Truck)

Action(GoTo(Truck, H1, H2), \\
Precondition: At(Truck, H1) \land Mobile(Truck), \\
Effect: \neg At(Truck, H1) \land At(Truck, H2))
At(Truck, H2) \land Package(H1, P1) \\
\land Package(Truck, P2) \land Mobile(Truck)

Action(Deliver(Truck, P2, H2), \\
Precondition: At(Truck, H2) \land Package(Truck, P2), \\
Effect: ¬Package(Truck, P2) \land Package(H2, P2))
\(\text{At(\text{Truck}, H2)} \land \text{Package(H1, P1)} \land \text{Package(H2, P2)} \land \text{Mobile(Truck)} \)
While the solution might seem obvious to us, the search space is (surprisingly) quite large.

The brute force way (forward search) simply looks at all valid actions from the current state.

We can then search it in using BFS (or iterative deepening) to find fewest action cost goal.
Forward search

GoTo(Truck, USPD)

At(USPD) ^ Package(P1)
Forward search

Actions: 3 (Move, Deliver, Load)
Objects: 6 (Truck, USPD, H1, H2, P1, P2)
Min moves to goal: 6 (L, L, G, D, G, D)

Despite this problem being simplistic, the branching factor is about 4 to 5 (even with removing redundant actions)

This means we could search around 10,000 states before we found the goal
Forward search

This search is actually much more than the number of states due to redundant paths

Package() can be: UPSD, Truck, H1, H2
At() can be: UPSD, Truck, H1, H2, P1, P2

There are 2 packages for Package()
There is 1 truck for Truck()

So total states = $4^2 * 6 = 96$
Backward search

You can convert by:
1. Removing **action effects** (in reverse)
 All **positive relations** are removed
 If we are using negative relations, all **negative relations** are removed from state
2. Adding in **precondition** effects

 Action$(Deliver(m, x, y),$

 Precondition: $At(m, y) \land \text{Package}(m, x),$

 Effect: $\neg \text{Package}(m, x) \land \text{Package}(y, x))$
Backward search

Action(Deliver(m, x, y),
Precondition: At(m, y) \land Package(m, x),
Effect: \neg Package(m, x) \land Package(y, x))

So if we started with: Package(H2,P2)
Substitute: y/H2, x/P2 (m can stay just “m”)
Remove positives: Package(H2,P2)
Add negatives: (nothing to do)
Add precondition: At(m,H2) \land Package(m,P2)

Final result: At(m,H2) \land Package(m, P2)