1. We call exchange matrix E the $n \times n$ matrix with entries $\eta_{ij} = 1$ if $i + j - 1 = n$ and $\eta_{ij} = 0$ otherwise. So E looks like a mirror image of the $n \times n$ identity matrix in that it has its ones on the anti-diagonal. An $n \times n$ matrix is said to be persymmetric if $EA \equiv A^T$.

(a) What are the rows of EA? What are the columns of AE? (Hint: Answer these in plain words no justifications needed).

(b) What is the inverse of E? [Hint: exploit (a)]

(c) Show that A is persymmetric if AE is symmetric. Conclude from this that a matrix is persymmetric if it is symmetric about its anti-diagonal

(d) Are Toeplitz matrices persymmetric? Find a persymmetric matrix that is not Toeplitz.

(e) Prove that the inverse of a Toeplitz matrix is persymmetric.

(f) Prove that the inverse of a Toeplitz matrix is persymmetric. Is it Toeplitz in general (If your answer is yes, prove result, else provide counter example)?

2. Let A be a real unitary matrix. Show that $\det(A) = \pm 1$. Let B be another unitary real matrix and assume that $\det(B) = -\det(A)$. Then show that $A + B$ is singular. [Hint: show that $\det(A + B) = 0$ by using properties of determinants (products...)]

3. Given two vectors $u, v, \in \mathbb{R}^n$, (a) What is $\det(uv^T)$? (b) What are all the eigenvalues of uv^T? (c) What is Trace(uv^T)? d) what is $\det(I + uv^T)$? e) What is Trace($I + uv^T$)? (f) What is the determinant of $A + uv^T$ when A is nonsingular? [Hint: for (d) and (f), exploit the fact that $\det(A) = \text{product of all eigenvalues.}]

4. What are all real normal matrices of dimension 2?

5. Let X be an $m \times n$ matrix, with $m \geq n$, that is of full rank. Show that X^TX is nonsingular. [Hint: By making judicious use of inner products, show that $X^TXy = 0$ implies that $Xy = 0$ which in turn implies that $y = 0$.]

6. Let a full-rank matrix $X \in \mathbb{R}^{m \times p}$ and a full-rank matrix $Y \in \mathbb{R}^{n \times p}$, with $m, n \geq p$, and let $A = XY^T$. Show that the rank of A is p. [Hint: The rank is clearly $\leq p$ because the range of A is included in the span of X. To show that it is exactly p, you will need to show that each of the columns of X is ‘reached’, i.e., that there is a vector z_j such $XY^Tz_j = x_j$ where $x_j = j$-th column of X. You will need to use the fact that Y^TY is nonsingular - a consequence of the previous question.

7. (Continuation of previous exercise) Show that a matrix $A \in \mathbb{R}^{m \times n}$ is of rank p if and only if there are two full rank matrices X and Y where $X \in \mathbb{R}^{m \times p}$ and $Y \in \mathbb{R}^{n \times p}$ such that $A = XY^T$. [Hint: The if part was shown in previous exercise.]

8. Let A be an $n \times n$ matrix whose only nonzero entries are in the first column and first row (i.e., $a_{ii} = 0$ when $i > 1$ and $j > 1$). (a) Show that A is of rank ≤ 2. When is the rank less than 2? (b) Assume that in addition A is symmetric and that $a_{11} = 1$. Show that there exist two vectors u and v such that $A = uu^T - vv^T$.
9. Let T be a symmetric Toeplitz matrix $T = [t_{i-j}]_{i,j=1}^n$ with $t_0 = 1$ and define the $n \times n$ lower triangular shift matrix Z:

$$
Z = \begin{pmatrix}
0 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & \cdots & 0 & 1
\end{pmatrix}
$$

(a) Show that the matrix $D = T - ZTZ^T$ has rank ≤ 2. Hints: For a matrix X what are the columns of XZ^T? What are the rows of ZX? Then use the result of the previous exercise.

(b) Show that D can be written as $D = uu^T - vv^T$ for certain vectors u, v to be specified. (Note: D is called the displacement of T with respect to Z and the rank of D is the displacement rank of T. Matrices with low displacement ranks have been extensively studied.)

10. Are the following functions from \mathbb{R}^n to \mathbb{R} vector norms? (prove or disprove).

 (a) $N(x) = \sum_{i=1}^n \left| \frac{x_i}{2} \right|$;
 (b) $N(x) = \left(\sum_{i=1}^n |x_i|^{1/2} \right)^2$;
 (c) $N(x) = \left(\sum_{i=1}^n |x_i| \right)^2$.

11. For the following exercise, you need to use Matlab. Consider the matrix:

$$
\begin{pmatrix}
-1 & 1 & -4 \\
0 & 0 & 0 \\
-2 & 4 & -4 \\
1 & -2 & 2 \\
-1 & 2 & -2
\end{pmatrix}
$$

 a. Use Matlab to compute the 1-norm, the 2-norm, the infinity norm and the Frobenius norm of the above matrix.

 b. Find the eigenvalues and the spectral radius of $A(1 : 3, 1 : 3)$ [matlab notation].

 c. Find the determinant of $A^T A$. Without using matlab, find the determinant of AA^T. Explain and verify your result with matlab. What can you state about the rank of A?

 d. Use the ‘rank’ function to determine the rank of A.

 e. Explore the “reduced row echelon form” function of matlab called rref. Once you understand what the rref function does, use it to find the RREF form of A. Can you explain in words what was done to obtain this form? [recall Gauss-Jordan elimination].

 For questions like these, you use Matlab as a sort of calculator. Show what command you used and the result. Also write down answers to other questions asked.