Note: Please review what you know about the LU factorization before starting this HW. We will review the LU factorization in the class of Monday Oct. 1.

1. Let \(\| \cdot \| \) be a norm in \(\mathbb{R}^n \). Define:
 \[
 \| x \|' = \sup \{ u^T x : u \in \mathbb{R}^n, \| u \| = 1 \}
 \]
 (a) Prove that this equation defines a norm (called the “dual norm” of \(\| \cdot \| \)).
 (b) Show that for all \(x, y \in \mathbb{R}^n \) we have
 \[|x^T y| \leq \| x \| \| y \|'
 \]
 (c) What is the dual norm of \(\| \cdot \|_1 \)?

2. (a) Find the LU factorization of the matrix:
 \[
 A = \begin{pmatrix}
 4 & -4 & 0 & 2 \\
 -2 & 6 & 2 & -3 \\
 2 & 0 & 5 & 8 \\
 0 & 2 & -1 & -3
 \end{pmatrix}
 \]
 (b) What is the determinant of \(A \)?
 (c) Solve the linear system \(Ax = b \) where \(b = [6, -7, 9, -4]^T \) using the LU factors obtained in part (a) above.
 (d) Using the LU factors obtained in (a) find the last column of the inverse of \(A \), without computing the whole inverse.

3. Write a matlab function which computes the LU factorization (without pivoting) of a matrix. Test it on the matrix of the previous question and verify the answers to subquestions (a) and (d). [Hint: Your starting point should be the gauss.m script that is posted. Your script should take a matrix \(A \) and return the matrices \(L \) and \(U \) – so for example \([L, U] = \text{gaussLU}(A)\)]

4. (a) Determine the LU factorization (Gaussian elimination without pivoting) of the following matrix
 \[
 A = \begin{pmatrix}
 1 & -1 & 1 \\
 0 & 4 & 2 \\
 6 & 2 & 0
 \end{pmatrix}
 \]
 (b) Compute the determinant of \(A \)
 (c) Compute the inverse of \(A \).
 (d) Repeat the above questions when partial pivoting is used, i.e., find the permutation matrix \(P \) and the matrices \(L, U \) such that \(PA = LU \), compute the determinant of \(A \) based on this factorization, and compute the inverse of \(A \), based on this factorization.
 (e) Use the answer from the previous question (result of LU factorization *with* partial pivoting) to solve the system \(Ax = b \) when \(b = [-2, 2, 2]^T \).
5. Let $A = LU$ the factorization of an $n \times n$ matrix A with $|l_{ij}| \leq 1$. Let a_i^T and u_i^T denote the i-th rows of A and U respectively. Verify that the following equation is satisfied:

$$u_i^T = a_i^T - \sum_{j=1}^{i-1} l_{ij} u_j^T.$$

Use this result to show that $\|U\|_\infty \leq 2^{n-1} \|A\|_\infty$. [Hint: You can use induction]

6. (a) Apply the matlab script you developed in Question 3 to compute the LU factorization of the following matrix (for the case when $n = 8$):

$$A = \begin{pmatrix}
1 & 0 & \cdots & \cdots & 0 & 1 \\
-1 & 1 & 0 & \cdots & 0 & 1 \\
-1 & -1 & 1 & 0 & \cdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
-1 & \cdots & \cdots & -1 & 1 \\
\end{pmatrix}$$

(b) What can you say about $\|U\|_\infty$ as a function of the size n? How do you relate this result to that of Question 5?

(c) Compute, for the case $n = 8$, the matrix $128 \ast A^{-1}$ (in matlab). Can you tell what the inverse of A is in general (for any n)? Prove your result. Ignore the following subquestions: What is (exactly) the 1-norm condition number of A as a function of n. Any comments?

7. Note: ignore this question. It is postponed to HW3. Consider the following matlab function which returns the absolute value of its first argument:

```matlab
function z = absolute(x,m)
    y = x .^ 2;
    for i=1:m
        y = sqrt(y);
    end
    z = y;
    for i=1:m-1
        z = z .^ 2;
    end
end
```

Apply this function for the vector $x = [.25, .50, .75, 1.25, 1.50, 1.75, 2]$ and for $m = 50$. Give an error analysis to explain the result. [Hint: This will be discussed a little in class]