## THE SINGULAR VALUE DECOMPOSITION

- The SVD - existence - properties.
- Pseudo-inverses and the SVD
- Use of SVD for least-squares problems
- Applications of the SVD


## The Singular Value Decomposition (SVD)

Theorem For any matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ there exist unitary matrices $\bar{U} \in \mathbb{R}^{m \times m}$ and $\boldsymbol{V} \in \mathbb{R}^{n \times n}$ such that

$$
A=U \Sigma V^{T}
$$

where $\Sigma$ is a diagonal matrix with entries $\sigma_{i i} \geq 0$.

$$
\sigma_{11} \geq \sigma_{22} \geq \cdots \sigma_{p p} \geq 0 \text { with } p=\min (n, m)
$$

$>$ The $\sigma_{i i}$ 's are the singular values. Notation change $\sigma_{i i} \longrightarrow \sigma_{i}$
Proof: Let $\sigma_{1}=\|\boldsymbol{A}\|_{2}=\max _{x,\|x\|_{2}=1}\|\boldsymbol{A} \boldsymbol{x}\|_{2}$. There exists a pair of unit vectors $\boldsymbol{v}_{1}, \boldsymbol{u}_{1}$ such that

$$
A v_{1}=\sigma_{1} u_{1}
$$

$>$ Complete $\boldsymbol{v}_{1}$ into an orthonormal basis of $\mathbb{R}^{n}$

$$
V \equiv\left[v_{1}, V_{2}\right]=n \times n \text { unitary }
$$

$>$ Complete $\boldsymbol{u}_{1}$ into an orthonormal basis of $\mathbb{R}^{m}$

$$
U \equiv\left[u_{1}, U_{2}\right]=m \times m \text { unitary }
$$

- Define $\boldsymbol{U}, \boldsymbol{V}$ as single Householder reflectors.
> Then, it is easy to show that

$$
A \boldsymbol{V}=\boldsymbol{U} \times\left(\begin{array}{cc}
\sigma_{1} & \boldsymbol{w}^{T} \\
0 & \boldsymbol{B}
\end{array}\right) \rightarrow \boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{V}=\left(\begin{array}{cc}
\sigma_{1} & w^{T} \\
0 & B
\end{array}\right) \equiv A_{1}
$$

$>$ Observe that

$$
\left\|A_{1}\binom{\sigma_{1}}{w}\right\|_{2} \geq \sigma_{1}^{2}+\|w\|^{2}=\sqrt{\sigma_{1}^{2}+\|w\|^{2}}\left\|\binom{\sigma_{1}}{w}\right\|_{2}
$$

> This shows that $\boldsymbol{w}$ must be zero [why?]
> Complete the proof by an induction argument.

Case 1:


Case 2:


## The "thin" SVD

> Consider the Case-1. It can be rewritten as

$$
A=\left[U_{1} U_{2}\right]\binom{\Sigma_{1}}{0} \quad V^{T}
$$

Which gives:

$$
A=U_{1} \Sigma_{1} V^{T}
$$

where $\boldsymbol{U}_{1}$ is $\boldsymbol{m} \times \boldsymbol{n}$ (same shape as $\boldsymbol{A}$ ), and $\boldsymbol{\Sigma}_{\boldsymbol{1}}$ and $\boldsymbol{V}$ are $\boldsymbol{n} \times \boldsymbol{n}$
$>$ Referred to as the "thin" SVD. Important in practice.
( ${ }^{0}$ How can you obtain the thin SVD from the QR factorization of $\boldsymbol{A}$ and the SVD of an $\boldsymbol{n} \times \boldsymbol{n}$ matrix?

## A few properties. Assume that

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0 \text { and } \sigma_{r+1}=\cdots=\sigma_{p}=0
$$

Then:

- $\operatorname{rank}(A)=r=$ number of nonzero singular values.
- $\operatorname{Ran}(A)=\operatorname{span}\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$
- $\operatorname{Null}\left(A^{T}\right)=\operatorname{span}\left\{u_{r+1}, u_{r+2}, \ldots, u_{m}\right\}$
- $\operatorname{Ran}\left(A^{T}\right)=\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$
- $\operatorname{Null}(A)=\operatorname{span}\left\{v_{r+1}, v_{r+2}, \ldots, v_{n}\right\}$


## Properties of the SVD (continued)

- The matrix $\boldsymbol{A}$ admits the SVD expansion:

$$
\boldsymbol{A}=\sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

- $\|A\|_{2}=\sigma_{1}=$ largest singular value
- $\|A\|_{F}=\left(\sum_{i=1}^{r} \sigma_{i}^{2}\right)^{1 / 2}$
- When $\boldsymbol{A}$ is an $\boldsymbol{n} \times n$ nonsingular matrix then $\left\|A^{-1}\right\|_{2}=1 / \sigma_{n}$


## Theorem Let $\boldsymbol{k}<\boldsymbol{r}$ and

$$
A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}
$$

then

$$
\min _{\operatorname{rank}(B)=k}\|A-B\|_{2}=\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}
$$

Proof: First: $\|\boldsymbol{A}-\boldsymbol{B}\|_{2} \geq \sigma_{k+1}$, for any rank- $\boldsymbol{k}$ matrix $\boldsymbol{B}$.
Consider $\mathcal{X}=\operatorname{span}\left\{v_{1}, v_{2}, \cdots, v_{k+1}\right\}$. Note:

$$
\operatorname{dim}(N u l l(B))=n-k \rightarrow N u l l(B) \cap \mathcal{X} \neq\{0\}
$$

[Why?]
Let $x_{0} \in \operatorname{Null}(B) \cap \mathcal{X}, x_{0} \neq 0$. Write $\boldsymbol{x}_{0}=\boldsymbol{V} \boldsymbol{y}$. Then

$$
\left\|(A-B) x_{0}\right\|_{2}=\left\|A \boldsymbol{x}_{0}\right\|_{2}=\left\|\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} \boldsymbol{V} \boldsymbol{y}\right\|_{2}=\|\Sigma \boldsymbol{y}\|_{2}
$$

But $\|\Sigma y\|_{2} \geq \sigma_{k+1}\left\|x_{0}\right\|_{2}$ (Show this). $\rightarrow\|A-B\|_{2} \geq \sigma_{k+1}$
Second: take $\boldsymbol{B}=\boldsymbol{A}_{\boldsymbol{k}}$. Achieves the min.

## Right and Left Singular vectors:

$$
\begin{aligned}
\boldsymbol{A} v_{i} & =\sigma_{i} u_{i} \\
\boldsymbol{A}^{T} u_{j} & =\sigma_{j} v_{j}
\end{aligned}
$$

$>$ Consequence $A^{T} A v_{i}=\sigma_{i}^{2} v_{i} \quad$ and $\quad A A^{T} u_{i}=\sigma_{i}^{2} u_{i}$
$>$ Right singular vectors ( $\boldsymbol{v}_{\boldsymbol{i}}{ }^{\prime}$ s) are eigenvectors of $\boldsymbol{A}^{T} \boldsymbol{A}$
$>$ Left singular vectors ( $\boldsymbol{u}_{i}{ }^{\prime}$ s) are eigenvectors of $\boldsymbol{A} \boldsymbol{A}^{T}$
$>$ Possible to get the SVD from eigenvectors of $\boldsymbol{A} \boldsymbol{A}^{T}$ and $\boldsymbol{A}^{T} \boldsymbol{A}$

- but: difficulties due to non-uniqueness of the SVD

Define the $\boldsymbol{r} \times \boldsymbol{r}$ matrix

$$
\Sigma_{1}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)
$$

$>$ Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and consider $\boldsymbol{A}^{T} \boldsymbol{A}\left(\in \mathbb{R}^{n \times n}\right)$ :

$$
A^{T} A=V \Sigma^{T} \Sigma V^{T} \rightarrow A^{T} A=V \underbrace{\left(\begin{array}{cc}
\Sigma_{1}^{2} & 0 \\
0 & 0
\end{array}\right)}_{n \times n} V^{T}
$$

$>$ This gives the spectral decomposition of $\boldsymbol{A}^{T} \boldsymbol{A}$.
$>$ Similarly, $\boldsymbol{U}$ gives the eigenvectors of $\boldsymbol{A} \boldsymbol{A}^{T}$.

$$
A A^{T}=U \underbrace{\left(\begin{array}{cc}
\Sigma_{1}^{2} & 0 \\
0 & 0
\end{array}\right)}_{m \times m} U^{T}
$$

Important:
$\boldsymbol{A}^{T} \boldsymbol{A}=\boldsymbol{V} \boldsymbol{D}_{1} \boldsymbol{V}^{T}$ and $\boldsymbol{A} \boldsymbol{A}^{T}=\boldsymbol{U} \boldsymbol{D}_{2} \boldsymbol{U}^{T}$ give the SVD factors $U, V$ up to signs!

## Pseudo-inverse of an arbitrary matrix

$>$ Let $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$ which we rewrite as

$$
A=\left(\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right)\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{1}^{T}}{V_{2}^{T}}=U_{1} \Sigma_{1} V_{1}^{T}
$$

Then the pseudo inverse of $\boldsymbol{A}$ is

$$
A^{\dagger}=V_{1} \Sigma_{1}^{-1} U_{1}^{T}=\sum_{j=1}^{r} \frac{1}{\sigma_{j}} v_{j} u_{j}^{T}
$$

$>$ The pseudo-inverse of $\boldsymbol{A}$ is the mapping from a vector $\boldsymbol{b}$ to the solution $\min _{x}\|\boldsymbol{A x}-\boldsymbol{b}\|_{2}^{2}$ that has minimal norm (to be shown)
$>$ In the full-rank overdetermined case, the normal equations yield $x=\underbrace{\left(A^{T} A\right)^{-1} A^{T}}_{A^{\dagger}} b$

## Least-squares problem via the SVD

Pb: $\quad \min \|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}$ in general case. Consider SVD of $\boldsymbol{A}$ :

$$
\boldsymbol{A}=\left(\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right)\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{1}^{T}}{\boldsymbol{V}_{2}^{T}}=\sum_{i=1}^{r} \sigma_{i} v_{i} u_{i}^{T}
$$

Then left multiply by $\boldsymbol{U}^{T}$ to get

$$
\begin{gathered}
\|A x-b\|_{2}^{2}=\left\|\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right)\binom{y_{1}}{y_{2}}-\binom{U_{1}^{T}}{U_{2}^{T}} b\right\|_{2}^{2} \\
\text { with } \quad\binom{y_{1}}{y_{2}}=\binom{V_{1}^{T}}{V_{2}^{T}} x
\end{gathered}
$$

\& What are all least-squares solutions to the system? Among these which one has minimum norm?

Answer: From above, must have $y_{1}=\Sigma_{1}^{-1} U_{1}^{T} b$ and $y_{2}=$ anything (free).
$>$ Recall that $\boldsymbol{x}=\boldsymbol{V} \boldsymbol{y}$ and write

$$
\begin{aligned}
x & =\left[V_{1}, V_{2}\right]\binom{y_{1}}{y_{2}}=V_{1} y_{1}+V_{2} y_{2} \\
& =V_{1} \Sigma_{1}^{-1} U_{1}^{T} b+V_{2} y_{2} \\
& =A^{\dagger} b+V_{2} y_{2}
\end{aligned}
$$

$>$ Note: $\boldsymbol{A}^{\dagger} b \in \operatorname{Ran}(A)$ and $\boldsymbol{V}_{2} \boldsymbol{y}_{2} \in \operatorname{Null}(\boldsymbol{A})$.
Therefore: least-squares solutions are of the form $\boldsymbol{A}^{\dagger} b+\boldsymbol{w}$ where $\boldsymbol{w} \in \operatorname{Null}(A)$.
$>$ Smallest norm when $\boldsymbol{y}_{2}=0$.
$>$ Minimum norm solution to $\min _{x}\|A x-b\|_{2}^{2}$ satisfies $\Sigma_{1} y_{1}=$ $\boldsymbol{U}_{1}^{T} \boldsymbol{b}, \boldsymbol{y}_{2}=0$. It is:

$$
x_{L S}=V_{1} \Sigma_{1}^{-1} U_{1}^{T} b=A^{\dagger} b
$$

(畇 If $A \in \mathbb{R}^{m \times n}$ what are the dimensions of $A^{\dagger}$ ?, $A^{\dagger} \boldsymbol{A}$ ?, $\boldsymbol{A} A^{\dagger}$ ?
区 Show that $\boldsymbol{A}^{\dagger} \boldsymbol{A}$ is an orthogonal projector. What are its range and null-space?
( ${ }^{0}$ Same questions for $\boldsymbol{A} \boldsymbol{A}^{\dagger}$.

## Moore-Penrose Inverse

The pseudo-inverse of $\boldsymbol{A}$ is given by

$$
A^{\dagger}=V\left(\begin{array}{cc}
\Sigma_{1}^{-1} & 0 \\
0 & 0
\end{array}\right) U^{T}=\sum_{i=1}^{r} \frac{v_{i} u_{i}^{T}}{\sigma_{i}}
$$

## Moore-Penrose conditions:

The pseudo inverse of a matrix is uniquely determined by these four conditions:
(1) $\boldsymbol{A} \boldsymbol{X} \boldsymbol{A}=\boldsymbol{A} \quad$ (2) $\boldsymbol{X} \boldsymbol{A} \boldsymbol{X}=\boldsymbol{X}$
(3) $(\boldsymbol{A X})^{H}=\boldsymbol{A X}$
(4) $(\boldsymbol{X A})^{H}=\boldsymbol{X} \boldsymbol{A}$
$>$ In the full-rank overdetermined case, $A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}$

## Least-squares problems and the SVD

> SVD can give much information about solving overdetermined and underdetermined linear systems.

Let $\boldsymbol{A}$ be an $\boldsymbol{m} \times \boldsymbol{n}$ matrix and $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$ its SVD with $r=\operatorname{rank}(A), V=\left[v_{1}, \ldots, v_{n}\right] \boldsymbol{U}=\left[u_{1}, \ldots, u_{m}\right]$. Then

$$
x_{L S}=\sum_{i=1}^{r} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}
$$

minimizes $\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}$ and has the smallest 2-norm among all possible minimizers. In addition,

$$
\rho_{L S} \equiv\left\|b-A x_{L S}\right\|_{2}=\|z\|_{2} \text { with } z=\left[u_{r+1}, \ldots, u_{m}\right]^{T} b
$$

## Least-squares problems and pseudo-inverses

$>A$ restatement of the first part of the previous result:
Consider the general linear least-squares problem

$$
\min _{x \in S}\|x\|_{2}, \quad S=\left\{x \in \mathbb{R}^{n} \mid\|b-A x\|_{2} \min \right\}
$$

This problem always has a unique solution given by

$$
x=A^{\dagger} b
$$

⓪ Consider the matrix:

$$
A=\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 0 & -2 & 1
\end{array}\right)
$$

- Compute the singular value decomposition of $\boldsymbol{A}$
- Find the matrix $\boldsymbol{B}$ of rank 1 which is the closest to the above matrix in the 2 -norm sense.
- What is the pseudo-inverse of $\boldsymbol{A}$ ?
- What is the pseudo-inverse of $\boldsymbol{B}$ ?
- Find the vector $\boldsymbol{x}$ of smallest norm which minimizes $\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}$ with $b=(1,1)^{T}$
- Find the vector $\boldsymbol{x}$ of smallest norm which minimizes $\|\boldsymbol{b}-\boldsymbol{B} \boldsymbol{x}\|_{2}$ with $b=(1,1)^{T}$


## Ill-conditioned systems and the SVD

$>$ Let $\boldsymbol{A}$ be $\boldsymbol{m} \times \boldsymbol{m}$ and $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$ its SVD
$>$ Solution of $\boldsymbol{A x}=\boldsymbol{b}$ is $\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}=\sum_{i=1}^{m} \frac{u_{i}^{T} b}{\sigma_{i}} \boldsymbol{v}_{i}$
$>$ When $\boldsymbol{A}$ is very ill-conditioned, it has many small singular values. The division by these small $\sigma_{i}$ 's will amplify any noise in the data. If $\tilde{b}=b+\epsilon$ then

$$
A^{-1} \tilde{b}=\sum_{i=1}^{m} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}+\underbrace{\sum_{i=1}^{m} \frac{\boldsymbol{u}_{i}^{T} \epsilon}{\sigma_{i}} v_{i}}_{\text {Error }}
$$

> Result: solution could be completely meaningless.

## Remedy:

Truncate the SVD by only keeping the $\sigma_{i}^{\prime} s$ that are $\geq \tau$, where $\boldsymbol{\tau}$ is a threshold

Gives the Truncated SVD solution (TSVD solution:)

$$
x_{T S V D}=\sum_{\sigma_{i} \geq \tau} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}
$$

Many applications [e.g., Image and signal processing,..]

## Numerical rank and the SVD

$>$ Assuming the original matrix $\boldsymbol{A}$ is exactly of rank $\boldsymbol{k}$ the computed SVD of $\boldsymbol{A}$ will be the SVD of a nearby matrix $\boldsymbol{A}+\boldsymbol{E}-$ Can show: $\left|\hat{\sigma}_{i}-\sigma_{i}\right| \leq \alpha \sigma_{1} \underline{\underline{u}}$
> Result: zero singular values will yield small computed singular values and $\boldsymbol{r}$ larger sing. values.
$>$ Reverse problem: numerical rank - The $\boldsymbol{\epsilon}$-rank of $\boldsymbol{A}$ :

$$
r_{\epsilon}=\min \left\{\operatorname{rank}(B): B \in \mathbb{R}^{m \times n},\|A-B\|_{2} \leq \epsilon\right\}
$$

« Show that $\boldsymbol{r}_{\boldsymbol{\epsilon}}$ equals the number sing. values that are $>\boldsymbol{\epsilon}$
« Show: $\boldsymbol{r}_{\epsilon}$ equals the number of columns of $\boldsymbol{A}$ that are linearly independent for any perturbation of $\boldsymbol{A}$ with norm $\leq \boldsymbol{\epsilon}$.
$>$ Practical problem: How to set $\boldsymbol{\epsilon}$ ?
10-24

## Pseudo inverses of full-rank matrices

Case 1: $m>n \mid$ Then $A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}$
$>$ Thin SVD is $\boldsymbol{A}=\boldsymbol{U}_{1} \boldsymbol{\Sigma}_{1} \boldsymbol{V}_{1}^{\boldsymbol{T}}$ and $\boldsymbol{V}_{1}, \boldsymbol{\Sigma}_{1}$ are $\boldsymbol{n} \times \boldsymbol{n}$. Then:

$$
\begin{aligned}
\left(A^{T} A\right)^{-1} A^{T} & =\left(V_{1} \Sigma_{1}^{2} V_{1}^{T}\right)^{-1} V_{1} \Sigma_{1} U_{1}^{T} \\
& =V_{1} \Sigma_{1}^{-2} V_{1}^{T} V_{1} \Sigma_{1} U_{1}^{T} \\
& =V_{1} \Sigma_{1}^{-1} U_{1}^{T} \\
& =A^{\dagger}
\end{aligned}
$$

Example: Pseudo-inverse of $\left(\begin{array}{cc}0 & 1 \\ 1 & 2 \\ 2 & -1 \\ 0 & 1\end{array}\right)$ is?

## Case 2: $m<n \mid$ Then $\boldsymbol{A}^{\dagger}=\boldsymbol{A}^{T}\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)^{-1}$

$>$ Thin SVD is $\boldsymbol{A}=\boldsymbol{U}_{1} \Sigma_{1} V_{1}^{T}$. Now $U_{1}, \Sigma_{1}$ are $\boldsymbol{m} \times \boldsymbol{m}$ and:

$$
\begin{aligned}
A^{T}\left(A A^{T}\right)^{-1} & =V_{1} \Sigma_{1} U_{1}^{T}\left[U_{1} \Sigma_{1}^{2} U_{1}^{T}\right]^{-1} \\
& =V_{1} \Sigma_{1} U_{1}^{T} U_{1} \Sigma_{1}^{-2} U_{1}^{T} \\
& =V_{1} \Sigma_{1} \Sigma_{1}^{-2} U_{1}^{T} \\
& =V_{1} \Sigma_{1}^{-1} U_{1}^{T} \\
& =A^{\dagger}
\end{aligned}
$$

Example: Pseudo-inverse of $\left(\begin{array}{cccc}0 & 1 & 2 & 0 \\ 1 & 2 & -1 & 1\end{array}\right)$ is?
$>$ Mnemonic: The pseudo inverse of $\boldsymbol{A}$ is $\boldsymbol{A}^{T}$ completed by the inverse of the smallest of $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1}$ or $\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)^{-1}$ where it fits (i.e., left or right)

