
THE SINGULAR VALUE DECOMPOSITION

• The SVD – existence - properties.

• Pseudo-inverses and the SVD

• Use of SVD for least-squares problems

• Applications of the SVD
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The Singular Value Decomposition (SVD)

Theorem For any matrixA ∈ Rm×n there exist unitary matrices

U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV T

where Σ is a diagonal matrix with entries σii ≥ 0.

σ11 ≥ σ22 ≥ · · ·σpp ≥ 0 with p = min(n,m)

ä The σii’s are the singular values. Notation change σii −→ σi

Proof: Let σ1 = ‖A‖2 = maxx,‖x‖2=1 ‖Ax‖2. There exists

a pair of unit vectors v1, u1 such that

Av1 = σ1u1
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ä Complete v1 into an orthonormal basis of Rn

V ≡ [v1, V2] = n× n unitary

ä Complete u1 into an orthonormal basis of Rm

U ≡ [u1, U2] = m×m unitary

- Define U, V as single Householder reflectors.

ä Then, it is easy to show that

AV = U ×
(
σ1 w

T

0 B

)
→ UTAV =

(
σ1 w

T

0 B

)
≡ A1
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ä Observe that∥∥∥A1

(σ1

w

)∥∥∥
2
≥ σ2

1 + ‖w‖2 =

√
σ2

1 + ‖w‖2

∥∥∥(σ1

w

)∥∥∥
2

ä This shows that w must be zero [why?]

ä Complete the proof by an induction argument.
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Case 1:

=

V

UA

T

Σ

Case 2:

A U Σ

V

=

T
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The “thin” SVD

ä Consider the Case-1. It can be rewritten as

A = [U1U2]

(
Σ1

0

)
V T

Which gives:

A = U1Σ1 V
T

where U1 is m×n (same shape as A), and Σ1 and V are n×n

ä Referred to as the “thin” SVD. Important in practice.

- How can you obtain the thin SVD from the QR factorization of
A and the SVD of an n× n matrix?
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A few properties. Assume that

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σp = 0

Then:

• rank(A) = r = number of nonzero singular values.

• Ran(A) = span{u1, u2, . . . , ur}

• Null(AT) = span{ur+1, ur+2, . . . , um}

• Ran(AT) = span{v1, v2, . . . , vr}

• Null(A) = span{vr+1, vr+2, . . . , vn}
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Properties of the SVD (continued)

• The matrix A admits the SVD expansion:

A =

r∑
i=1

σiuiv
T
i

• ‖A‖2 = σ1 = largest singular value

• ‖A‖F =
(∑r

i=1 σ
2
i

)1/2

• When A is an n×n nonsingular matrix then ‖A−1‖2 = 1/σn
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Theorem Let k < r and

Ak =

k∑
i=1

σiuiv
T
i

then

min
rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1
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Proof: First: ‖A−B‖2 ≥ σk+1, for any rank-k matrix B.

Consider X = span{v1, v2, · · · , vk+1}. Note:

dim(Null(B)) = n− k→ Null(B) ∩ X 6= {0}

[Why?]

Let x0 ∈ Null(B) ∩ X , x0 6= 0. Write x0 = V y. Then

‖(A−B)x0‖2 = ‖Ax0‖2 = ‖UΣV TV y‖2 = ‖Σy‖2

But ‖Σy‖2 ≥ σk+1‖x0‖2 (Show this). → ‖A−B‖2 ≥ σk+1

Second: take B = Ak. Achieves the min.
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Right and Left Singular vectors:

Avi = σiui
ATuj = σjvj

ä Consequence ATAvi = σ2
ivi and AATui = σ2

iui

ä Right singular vectors (vi’s) are eigenvectors of ATA

ä Left singular vectors (ui’s) are eigenvectors of AAT

ä Possible to get the SVD from eigenvectors of AAT and ATA
– but: difficulties due to non-uniqueness of the SVD
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Define the r × r matrix

Σ1 = diag(σ1, . . . , σr)

ä Let A ∈ Rm×n and consider ATA (∈ Rn×n):

ATA = V ΣTΣV T → ATA = V

(
Σ2

1 0
0 0

)
︸ ︷︷ ︸

n×n

V T

ä This gives the spectral decomposition of ATA.
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ä Similarly, U gives the eigenvectors of AAT .

AAT = U

(
Σ2

1 0
0 0

)
︸ ︷︷ ︸
m×m

UT

Important:

ATA = V D1V
T and AAT = UD2U

T give the SVD factors
U, V up to signs!

10-13 TB: 4-5; AB: 1.1, 2.2; GvL 2.4,5.5 – SVD

10-13



Pseudo-inverse of an arbitrary matrix

ä Let A = UΣV T which we rewrite as

A =
(
U1 U2

) (Σ1 0
0 0

)(
V T

1

V T
2

)
= U1Σ1V

T
1

Then the pseudo in-
verse of A is

A† = V1Σ
−1
1 UT

1 =

r∑
j=1

1

σj
vju

T
j

ä The pseudo-inverse of A is the mapping from a vector b to the
solution minx ‖Ax− b‖2

2 that has minimal norm (to be shown)

ä In the full-rank overdetermined case, the normal equations yield
x = (ATA)−1AT︸ ︷︷ ︸

A†

b
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Least-squares problem via the SVD

Pb: min ‖b−Ax‖2 in general case. Consider SVD of A:

A =
(
U1 U2

) (Σ1 0
0 0

)(
V T

1

V T
2

)
=

r∑
i=1

σiviu
T
i

Then left multiply by UT to get

‖Ax− b‖2
2 =

∥∥∥∥(Σ1 0
0 0

)(
y1

y2

)
−
(
UT

1

UT
2

)
b

∥∥∥∥2

2

with

(
y1

y2

)
=

(
V T

1

V T
2

)
x

- What are all least-squares solutions to the system? Among these
which one has minimum norm?
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Answer: From above, must have y1 = Σ−1
1 UT

1 b and y2 =
anything (free).

ä Recall that x = V y and write

x = [V1, V2]

(
y1

y2

)
= V1y1 + V2y2

= V1Σ
−1
1 UT

1 b+ V2y2

= A†b+ V2y2

ä Note: A†b ∈ Ran(A) and V2y2 ∈ Null(A).

ä Therefore: least-squares solutions are of the form A†b + w
where w ∈ Null(A).

ä Smallest norm when y2 = 0.
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ä Minimum norm solution to minx ‖Ax− b‖2
2 satisfies Σ1y1 =

UT
1 b, y2 = 0. It is:

xLS = V1Σ
−1
1 UT

1 b = A†b

- If A ∈ Rm×n what are the dimensions of A†?, A†A?, AA†?

- Show that A†A is an orthogonal projector. What are its range
and null-space?

- Same questions for AA†.
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Moore-Penrose Inverse

The pseudo-inverse of A is given by

A† = V

(
Σ−1

1 0
0 0

)
UT =

r∑
i=1

viu
T
i

σi

Moore-Penrose conditions:

The pseudo inverse of a matrix is uniquely determined by these four
conditions:

(1) AXA = A (2) XAX = X
(3) (AX)H = AX (4) (XA)H = XA

ä In the full-rank overdetermined case, A† = (ATA)−1AT
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Least-squares problems and the SVD

ä SVD can give much information about solving overdetermined
and underdetermined linear systems.

Let A be an m × n matrix and A = UΣV T its SVD with
r = rank(A), V = [v1, . . . , vn] U = [u1, . . . , um]. Then

xLS =

r∑
i=1

uTi b

σi
vi

minimizes ‖b − Ax‖2 and has the smallest 2-norm among all
possible minimizers. In addition,

ρLS ≡ ‖b−AxLS‖2 = ‖z‖2 with z = [ur+1, . . . , um]Tb
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Least-squares problems and pseudo-inverses

ä A restatement of the first part of the previous result:

Consider the general linear least-squares problem

min
x ∈ S

‖x‖2, S = {x ∈ Rn | ‖b−Ax‖2 min}.

This problem always has a unique solution given by

x = A†b
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- Consider the matrix: A =

(
1 0 2 0
0 0 −2 1

)

• Compute the singular value decomposition of A

• Find the matrix B of rank 1 which is the closest to the above
matrix in the 2-norm sense.

• What is the pseudo-inverse of A?

• What is the pseudo-inverse of B?

• Find the vector x of smallest norm which minimizes ‖b−Ax‖2

with b = (1, 1)T

• Find the vector x of smallest norm which minimizes ‖b−Bx‖2

with b = (1, 1)T
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Ill-conditioned systems and the SVD

ä Let A be m×m and A = UΣV T its SVD

ä Solution of Ax = b is x = A−1b =
∑m

i=1
uTi b

σi
vi

ä When A is very ill-conditioned, it has many small singular values.
The division by these small σi’s will amplify any noise in the data. If
b̃ = b+ ε then

A−1b̃ =

m∑
i=1

uTi b

σi
vi +

m∑
i=1

uTi ε

σi
vi︸ ︷︷ ︸

Error

ä Result: solution could be completely meaningless.
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Remedy: SVD regularization

Truncate the SVD by only keeping the σ′is that are ≥ τ , where
τ is a threshold
ä Gives the Truncated SVD solution (TSVD solution:)

xTSV D =
∑
σi≥τ

uTi b

σi
vi

ä Many applications [e.g., Image and signal processing,..]
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Numerical rank and the SVD

ä Assuming the original matrixA is exactly of rank k the computed
SVD of A will be the SVD of a nearby matrix A+ E – Can show:
|σ̂i − σi| ≤ α σ1u

ä Result: zero singular values will yield small computed singular
values and r larger sing. values.

ä Reverse problem: numerical rank – The ε-rank of A :

rε = min{rank(B) : B ∈ Rm×n, ‖A−B‖2 ≤ ε},

- Show that rε equals the number sing. values that are >ε

- Show: rε equals the number of columns of A that are linearly
independent for any perturbation of A with norm ≤ ε.

ä Practical problem : How to set ε?
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Pseudo inverses of full-rank matrices

Case 1: m > n Then A† = (ATA)−1AT

ä Thin SVD is A = U1Σ1V
T

1 and V1,Σ1 are n× n. Then:

(ATA)−1AT = (V1Σ
2
1V

T
1 )−1V1Σ1U

T
1

= V1Σ
−2
1 V T

1 V1Σ1U
T
1

= V1Σ
−1
1 UT

1

= A†

Example: Pseudo-inverse of


0 1
1 2
2 −1
0 1

 is?
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Case 2: m < n Then A† = AT(AAT)−1

ä Thin SVD is A = U1Σ1V
T

1 . Now U1,Σ1 are m×m and:

AT(AAT)−1 = V1Σ1U
T
1 [U1Σ

2
1U

T
1 ]−1

= V1Σ1U
T
1 U1Σ

−2
1 UT

1

= V1Σ1Σ
−2
1 UT

1

= V1Σ
−1
1 UT

1

= A†

Example: Pseudo-inverse of

(
0 1 2 0
1 2 −1 1

)
is?

ä Mnemonic: The pseudo inverse of A is AT completed by the
inverse of the smallest of (ATA)−1 or (AAT)−1 where it fits (i.e.,
left or right)
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