A few applications of the SVD

11 - 1

Many methods require to approximate the original data (matrix) by a low rank matrix before attempting to solve the original problem

Regularization methods require the solution of a least-squares linear system Ax = b approximately in the dominant singular space of A

The Latent Semantic Indexing (LSI) method in information retrieval, performs the "query" in the dominant singular space of A

Methods utilizing Principal Component Analysis, e.g. Face Recognition. **Commonality:** Approximate A (or A^{\dagger}) by a lower rank approximation A_k (using dominant singular space) before solving original problem.

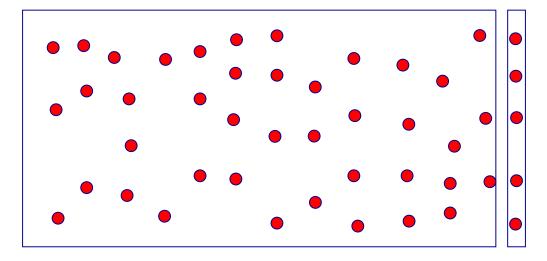
This approximation captures the main features of the data while getting rid of noise and redundancy

- *Note:* Common misconception: 'we need to reduce dimension in order to reduce computational cost'. In reality: using less information often yields better results. This is the problem of overfitting.
- Good illustration: Information Retrieval (IR)

11-2

Information Retrieval: Vector Space Model

Siven: a collection of documents (columns of a matrix A) and a query vector q.



Collection represented by an $m \times n$ term by document matrix with $a_{ij} = L_{ij}G_iN_j$

 \blacktriangleright Queries ('pseudo-documents') q are represented similarly to a column

Vector Space Model - continued

 \blacktriangleright Problem: find a column of A that best matches q

 \succ Similarity metric: angle between the column and q - Use cosines:

 $\frac{|c^T q|}{\|c\|_2 \|q\|_2}$

$$s = A^T q$$

 \succ s = similarity vector.

11-4

Literal matching – not very effective.

Use of the SVD

Many problems with literal matching: polysemy, synonymy, ...

Need to extract intrinsic information – or underlying "semantic" information –

> Solution (LSI): replace matrix A by a low rank approximation using the Singular Value Decomposition (SVD)

$$A = U \Sigma V^T \quad o \quad A_k = U_k \Sigma_k V_k^T$$

- \succ U_k : term space, V_k : document space.
- Refer to this as Truncated SVD (TSVD) approach

New similarity vector:

$$s_k = A_k^T q = V_k \Sigma_k U_k^T q$$

Issues:

- > Problem 1: How to select k?
- Problem 2: computational cost (memory + computation)
- Problem 3: updates [e.g. google data changes all the time]
- > Not practical for very large sets

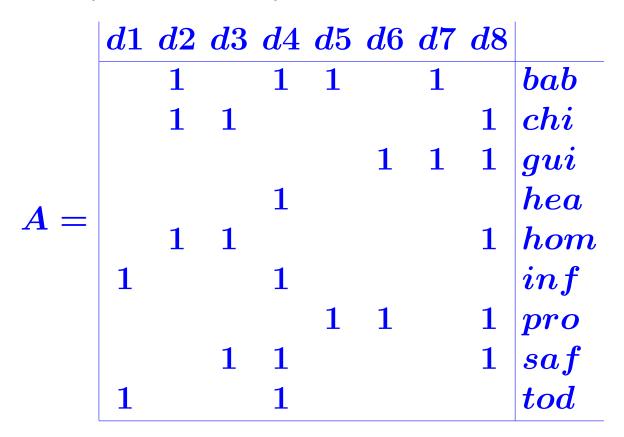
LSI : an example

%%	D1	:	INFANT & TODLER first aid
%%	D2	:	BABIES & CHILDREN's room for your HOME
%%	D3	:	CHILD SAFETY at HOME Your BABY'S HEALTH and SAFETY From INFANT to TODDLER BABY PROOFING basics
%%	D4	:	Your BABY's HEALTH and SAFETY
%%		:	From INFANT to TODDLER
%%	D5	:	BABY PROOFING basics
10/0	D6	•	Your GUIDE to easy rust PRUUFING
%%	D7	:	Beanie BABIES collector's GUIDE
%%	D8	:	Beanie BABIES collector's GUIDE SAFETY GUIDE for CHILD PROOFING your HOME
%	0000	0 / 0 / 0 / 0 / 0	/ 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0
%%	TER	RMS :	1:BABY 2:CHILD 3:GUIDE 4:HEALTH 5:HOME
%%	~		6:INFANT 7:PROOFING 8:SAFETY 9:TODDLER
%%	Sou	irce	6:INFANT 7:PROOFING 8:SAFETY 9:TODDLER : Berry and Browne, SIAM., '99

Number of documents: 8

> Number of terms: 9

Raw matrix (before scaling).



Get the anwser to the query Child Safety, so $q = [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0]$

using cosines and then using LSI with k = 3.

11-8

(articles) – SVDapp

Dimension reduction

11-9

Dimensionality Reduction (DR) techniques pervasive to many applications

Often main goal of dimension reduction is not to reduce computational cost. Instead:

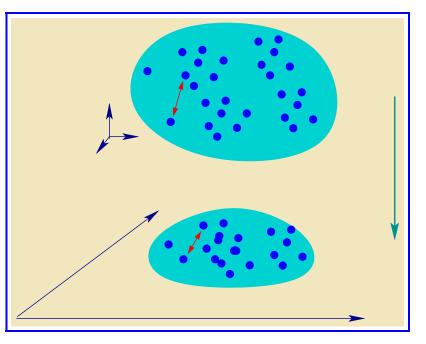
- Dimension reduction used to reduce noise and redundancy in data
- Dimension reduction used to discover patterns (e.g., supervised learning)

Techniques depend on desirable features or application: Preserve angles? Preserve distances? Maximize variance? ..

The problem

11-10

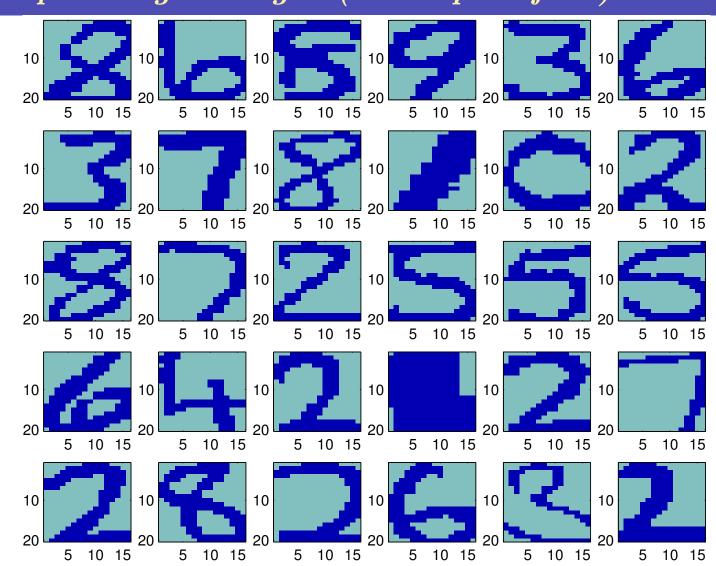
Given $d \ll m$ find a mapping $\Phi: x \in \mathbb{R}^m \longrightarrow y \in \mathbb{R}^d$ Mapping may be explicit (e.g., $y = V^T x$)
Or implicit (nonlinear)



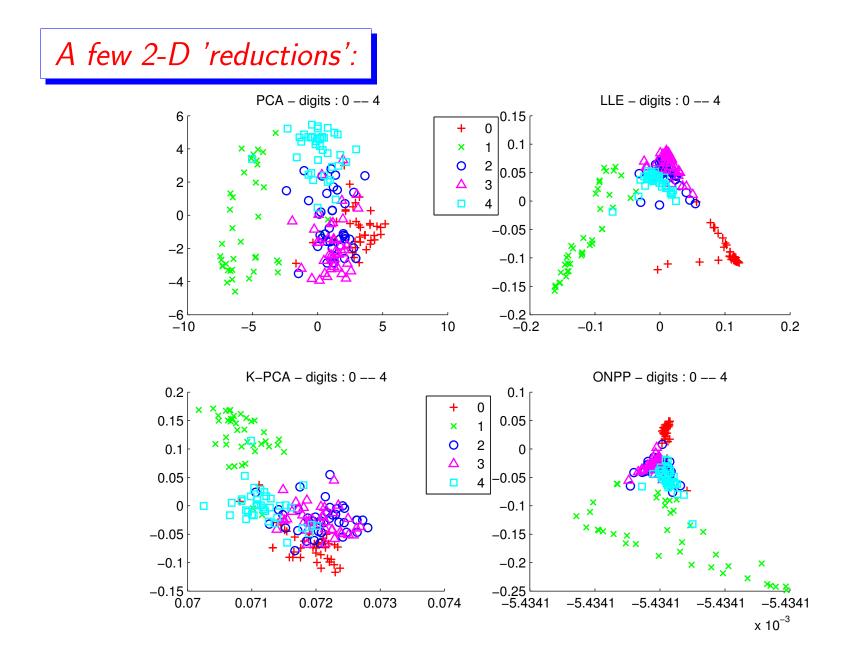
Practically:Find a low-dimensional representation $Y \in \mathbb{R}^{d \times n}$ of $X \in \mathbb{R}^{m \times n}$.

Two classes of methods: (1) projection techniques and (2) nonlinear implicit methods.

(articles) – SVDapp



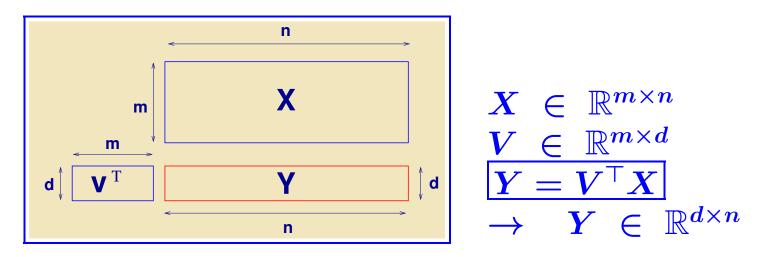
Example: Digit images (a sample of 30)



Projection-based Dimensionality Reduction

Given: a data set $X = [x_1, x_2, \dots, x_n]$, and d the dimension of the desired reduced space Y.

Want: a linear transformation from X to Y



• m-dimens. objects (x_i) 'flattened' to d-dimens. space (y_i)

Problem: Find the best such mapping (optimization) given that the y_i 's must satisfy certain constraints

11-13	(articles) – SVDapp

Principal Component Analysis (PCA)

> PCA: find V (orthogonal) so that projected data $Y = V^T X$ has maximum variance

 \blacktriangleright Maximize over all orthogonal m imes d matrices V:

$$\sum_i \|y_i - rac{1}{n}\sum_j y_j\|_2^2 = \cdots = {\sf Tr} \left[V^{ op} ar{X}ar{X}^{ op}V
ight]$$

Where: $\bar{X} = [\bar{x}_1, \cdots, \bar{x}_n]$ with $\bar{x}_i = x_i - \mu$, $\mu =$ mean.

 $V = \{ \text{ dominant eigenvectors } \}$ of the covariance matrix \blacktriangleright i.e., Optimal V = Set of left singular vectors of \overline{X} associated with d largest singular values.

Show that $\bar{X} = X(I - \frac{1}{n}ee^T)$ (here e = vector of all ones). What does the projector $(I - \frac{1}{n}ee^T)$ do?

Show that solution V also minimizes 'reconstruction error' ..

$$\sum_i \|ar{x}_i - VV^Tar{x}_i\|^2 = \sum_i \|ar{x}_i - Var{y}_i\|^2$$

🙇 .. and that it also maximizes $\sum_{i,j} \|y_i - y_j\|^2$

11-15

Matrix Completion Problem

11-16

Consider a table of movie ratings. You want to predict missing ratings by assuming commonality (low rank matrix).

g	given o	predictions				
movie	Paul	Jane	Ann	Paul	Jane	Ann
Title-1	-1	3	-1	-1.2	1.7	-0.7
Title-2	4	X	3	2.8	-1.2	2.5
Title-3	-3	1	-4	-2.7	1.0	-2.5
Title-4	X	-1	-1	-0.5	-0.3	-0.6
Title-5	3	-2	1	1.8	-1.4	1.4
Title-6	-2	3	X	-1.6	1.8	-1.2
	A			X		

Minimize $||(X - A)_{mask}||_F^2 + 4||X||_*$ "minimize sum-of-squares of deviations from known ratings plus sum of singular values of solution (to reduce the rank)."

(articles) – SVDapp