A few applications of the SVD

Many methods require to approximate the original data (matrix) by a low rank matrix before attempting to solve the original problem

Regularization methods require the solution of a least-squares linear system Ax = b approximately in the dominant singular space of A

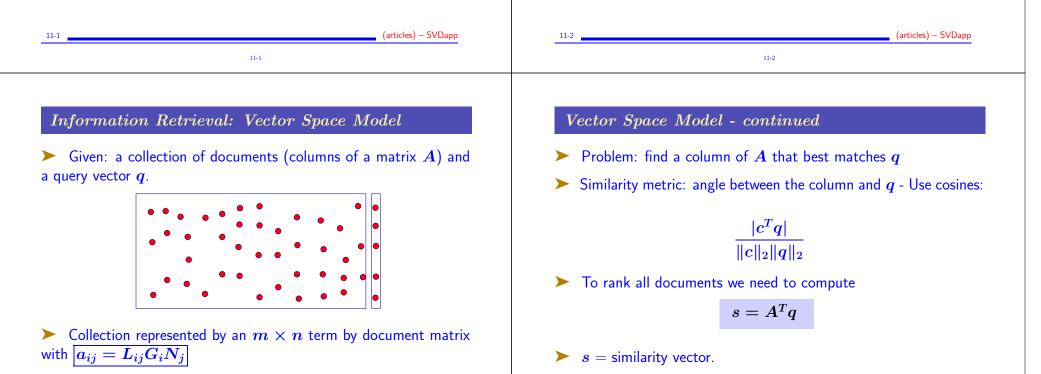
The Latent Semantic Indexing (LSI) method in information retrieval, performs the "query" in the dominant singular space of A

► Methods utilizing Principal Component Analysis, e.g. Face Recognition.

Commonality: Approximate A (or A^{\dagger}) by a lower rank approximation A_k (using dominant singular space) before solving original problem.

This approximation captures the main features of the data while getting rid of noise and redundancy

- *Note:* Common misconception: 'we need to reduce dimension in order to reduce computational cost'. In reality: using less information often yields better results. This is the problem of overfitting.
- Good illustration: Information Retrieval (IR)



 \blacktriangleright Queries ('pseudo-documents') q are represented similarly to a column

Literal matching – not very effective.

11-4

(articles) – SVDapp

(articles) – SVDapp

Use of the SVD

> Many problems with literal matching: *polysemy*, *synonymy*, ...

Need to extract intrinsic information – or underlying "semantic" information –

Solution (LSI): replace matrix A by a low rank approximation using the Singular Value Decomposition (SVD)

 $A = U \Sigma V^T \quad
ightarrow \quad A_k = U_k \Sigma_k V_k^T$

11-7

- \succ U_k : term space, V_k : document space.
- > Refer to this as Truncated SVD (TSVD) approach

New similarity vector:

$$s_k = A_k^T q = V_k \Sigma_k U_k^T q$$

Issues:

- > Problem 1: How to select k?
- Problem 2: computational cost (memory + computation)
- > Problem 3: updates [e.g. google data changes all the time]

11-8

> Not practical for very large sets

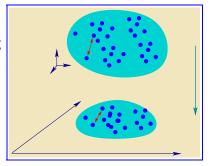
11-5	11-6			
LSI : an example	\blacktriangleright Raw matrix (before scaling). $d1 \ d2 \ d3 \ d4 \ d5 \ d6 \ d7 \ d8$			
<pre>%% D1 : INFANT & TODLER first aid %% D2 : BABIES & CHILDREN's room for your HOME D3 : CHILD SAFETY at HOME %% D4 : Your BABY'S HEALTH and SAFETY % : From INFANT to TODDLER %% D5 : BABY PROOFING basics %% D6 : Your GUIDE to easy rust PROOFING %% D7 : Beanie BABIES collector's GUIDE %% D8 : SAFETY GUIDE for CHILD PROOFING your HOME %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</pre>	$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & bab \\ 1 & 1 & 1 & 1 & 1 & bab \\ 1 & 1 & 1 & 1 & chi \\ & & 1 & 1 & 1 & gui \\ & & 1 & 1 & 1 & gui \\ & & 1 & 1 & 1 & hea \\ 1 & 1 & & & 1 & hom \\ 1 & & 1 & 1 & inf \\ & & & 1 & 1 & 1 & pro \\ & & 1 & 1 & 1 & 1 & saf \\ 1 & & 1 & & & tod \end{bmatrix}$			
Number of documents: 8	Get the anwser to the query Child Safety, so			
Number of terms: 9	$q = [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0]$ using cosines and then using LSI with $k = 3$.			

Dimension reduction

Dimensionality Reduction (DR) techniques pervasive to many applications

- > Often main goal of dimension reduction is not to reduce computational cost. Instead:
- Dimension reduction used to reduce noise and redundancy in data
- Dimension reduction used to discover patterns (e.g., supervised learning)
- > Techniques depend on desirable features or application: Preserve angles? Preserve distances? Maximize variance? ...

 \blacktriangleright Given $d \ll m$ find a mapping $\Phi: x \in \mathbb{R}^m \longrightarrow y \in \mathbb{R}^d$ Mapping may be explicit (e.g., $y = V^T x$ > Or implicit (nonlinear)



(articles) – SVDapp

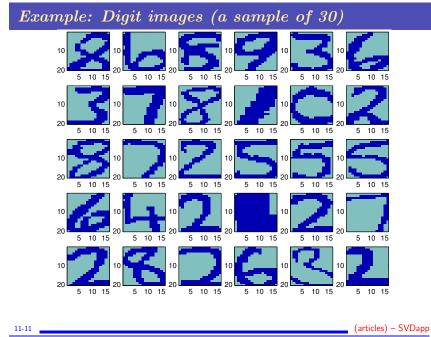
Practically:

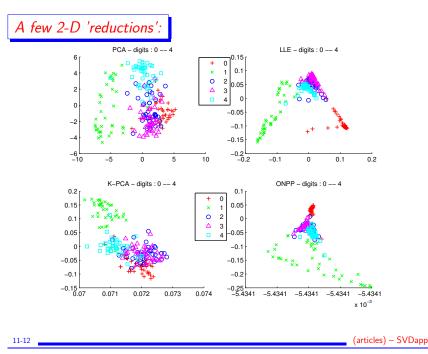
11-10

Find a low-dimensional representation $Y \in$ $\mathbb{R}^{d imes n}$ of $X \in \mathbb{R}^{m imes n}$.

Two classes of methods: (1) projection techniques and (2) nonlinear implicit methods.

11-10



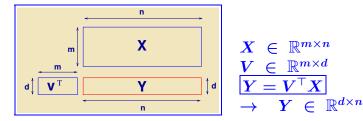


11-12

Projection-based Dimensionality Reduction

Given: a data set $X = [x_1, x_2, \dots, x_n]$, and d the dimension of the desired reduced space Y.

Want: a linear transformation from X to Y



 \blacktriangleright m-dimens. objects (x_i) 'flattened' to d-dimens. space (y_i)

Problem: Find the best such mapping (optimization) given that the y_i 's must satisfy certain constraints

11-13

Show that $\overline{X} = X(I - \frac{1}{n}ee^T)$ (here e = vector of all ones). What does the projector $(I - \frac{1}{n}ee^T)$ do?

 \checkmark Show that solution V also minimizes 'reconstruction error' ...

$$\sum_i \|ar{x}_i - VV^Tar{x}_i\|^2 = \sum_i \|ar{x}_i - Var{y}_i\|^2$$

11-15

 \blacksquare .. and that it also maximizes $\sum_{i,j} \|y_i - y_j\|^2$

Principal Component Analysis (PCA)

> PCA: find V (orthogonal) so that projected data $Y = V^T X$ has maximum variance

> Maximize over all orthogonal $m \times d$ matrices V:

$$\sum_i \|y_i - rac{1}{n}\sum_j y_j\|_2^2 = \cdots = ext{Tr} \left[V^ op ar{X}ar{X}^ op V
ight].$$

Where:
$$ar{X} = [ar{x}_1, \cdots, ar{x}_n]$$
 with $ar{x}_i = x_i - \mu$, $\mu =$ mean.

Solution:

11-14

11-16

 $V = \{$ dominant eigenvectors $\}$ of the covariance matrix

 \succ i.e., Optimal V = Set of left singular vectors of \bar{X} associated with d largest singular values.

11-14

(articles) – SVDapp

(articles) – SVDapp

Matrix Completion Problem

Consider a table of movie ratings. You want to predict missing ratings by assuming commonality (low rank matrix).

given data				predictions				
movie	Paul	Jane	Ann	Paul	Jane	Ann		
Title-1	-1	3	-1	-1.2	1.7	-0.7		
Title-2	4	x	3	2.8	-1.2	2.5		
Title-3	-3	1	-4	-2.7	1.0	-2.5		
Title-4	x	-1	-1	-0.5	-0.3	-0.6		
Title-5	3	-2	1	1.8	-1.4	1.4		
Title-6	-2	3	x	-1.6	1.8	-1.2		
	A			X				
11 /	4 X U 2 V U							

 $\blacktriangleright \text{ Minimize } \|(X - A)_{\text{mask}}\|_F^2 + 4\|X\|_*$

"minimize sum-of-squares of deviations from known ratings plus sum of singular values of solution (to reduce the rank)."

11-15

11-13

(articles) – SVDapp

(articles) – SVDapp

11-16