EIGENVALUE PROBLEMS

• Background on eigenvalues/ eigenvectors / decompositions
• Perturbation analysis, condition numbers..
• Power method
• The QR algorithm
• Practical QR algorithms: use of Hessenberg form and shifts
• The symmetric eigenvalue problem.
Eigenvalue Problems. Introduction

Let A an $n \times n$ real nonsymmetric matrix. The eigenvalue problem:

\[Ax = \lambda x \]

- $\lambda \in \mathbb{C}$: eigenvalue
- $x \in \mathbb{C}^n$: eigenvector

Types of Problems:

- Compute a few λ_i’s with smallest or largest real parts;
- Compute all λ_i’s in a certain region of \mathbb{C};
- Compute a few of the dominant eigenvalues;
- Compute all λ_i’s.
Eigenvalue Problems. Their origins

- Structural Engineering \([Ku = \lambda Mu]\)
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Bifurcation analysis [e.g., in fluid flow]
- Electronic structure calculations [Schrödinger equation..]
- Application of new era: page ranking on the world-wide web.
Basic definitions and properties

A complex scalar λ is called an **eigenvalue** of a square matrix A if there exists a nonzero vector u in \mathbb{C}^n such that $Au = \lambda u$. The vector u is called an **eigenvector** of A associated with λ. The set of all eigenvalues of A is the ‘spectrum’ of A. Notation: $\Lambda(A)$.

- λ is an eigenvalue iff the columns of $A - \lambda I$ are linearly dependent.

- ... equivalent to saying that its rows are linearly dependent. So: there is a nonzero vector w such that

$$w^H(A - \lambda I) = 0$$

- w is a left eigenvector of A ($u =$ right eigenvector)

- λ is an eigenvalue iff $\det(A - \lambda I) = 0$
An eigenvalue is a root of the Characteristic polynomial:

\[p_A(\lambda) = \det(A - \lambda I) \]

So there are \(n \) eigenvalues (counted with their multiplicities).

The multiplicity of these eigenvalues as roots of \(p_A \) are called algebraic multiplicities.

The geometric multiplicity of an eigenvalue \(\lambda_i \) is the number of linearly independent eigenvectors associated with \(\lambda_i \).
Geometric multiplicity is \(\leq \) algebraic multiplicity.

An eigenvalue is simple if its (algebraic) multiplicity is one.

It is semi-simple if its geometric and algebraic multiplicities are equal.

Consider

\[
A = \begin{pmatrix}
1 & 2 & -4 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{pmatrix}
\]

Eigenvalues of \(A \)? their algebraic multiplicities? their geometric multiplicities? Is one a semi-simple eigenvalue?

Same questions if \(a_{33} \) is replaced by one.

Same questions if \(a_{12} \) is replaced by zero.
Two matrices A and B are similar if there exists a nonsingular matrix X such that

$$A = XBX^{-1}$$

Definition: A is diagonalizable if it is similar to a diagonal matrix

THEOREM: A matrix is diagonalizable iff it has n linearly independent eigenvectors

... iff all its eigenvalues are semi-simple

... iff its eigenvectors form a basis of \mathbb{R}^n

$Av = \lambda v \iff B(X^{-1}v) = \lambda(X^{-1}v)$

eigenvalues remain the same, eigenvectors transformed.
Other Transformations Preserving Eigenstructure

Shift \[B = A - \sigma I: \quad Av = \lambda v \iff Bv = (\lambda - \sigma)v \]
eigenvalues move, eigenvectors remain the same.

Polynomial \[B = p(A) = \alpha_0 I + \cdots + \alpha_n A^n: \quad Av = \lambda v \iff Bv = p(\lambda)v \]
eigenvalues transformed, eigenvectors remain the same.

Invert \[B = A^{-1}: \quad Av = \lambda v \iff Bv = \lambda^{-1}v \]
eigenvalues inverted, eigenvectors remain the same.

Shift & Invert \[B = (A - \sigma I)^{-1}: \quad Av = \lambda v \iff Bv = (\lambda - \sigma)^{-1}v \]
eigenvalues transformed, eigenvectors remain the same. spacing between eigenvalues can be radically changed.
THEOREM (Schur form): Any matrix is unitarily similar to a triangular matrix, i.e., for any A there exists a unitary matrix Q and an upper triangular matrix R such that

$$A = QRQ^H$$

- Any Hermitian matrix is unitarily similar to a real diagonal matrix, (i.e. its Schur form is real diagonal).

- It is easy to read off the eigenvalues (including all the multiplicities) from the triangular matrix R.

- Eigenvectors can be obtained by back-solving.
Show that there is at least one eigenvalue and eigenvector of A: $Ax = \lambda x$, with $\|x\|_2 = 1$

There is a unitary transformation P such that $Px = e_1$. How do you define P?

Show that $PAP^H = \begin{pmatrix} \lambda & \ast \\ 0 & A_2 \end{pmatrix}$.

Apply process recursively to A_2.

What happens if A is Hermitian?

Another proof altogether: use Jordan form of A and QR factorization
Perturbation analysis

General questions: If A is perturbed how does an eigenvalue change? How about an eigenvector?

Also: sensitivity of an eigenvalue to perturbations

THEOREM [Gershgorin]

\[\forall \lambda \in \Lambda(A), \exists i \text{ such that } |\lambda - a_{ii}| \leq \sum_{j=1}^{j=n, j \neq i} |a_{ij}|. \]

In words: eigenvalue λ is located in one of the closed discs of the complex plane centered at a_{ii} and with radius $\rho_i = \sum_{j \neq i} |a_{ij}|$.

TB: 24-27; AB: 3.1-3.3; GvL 7.1-7.4, 7.5.2 – Eigen
Proof: By contradiction. If contrary is true then there is one eigenvalue λ that does not belong to any of the disks, i.e., such that $|\lambda - a_{ii}| > \rho_i$ for all i. Write matrix $A - \lambda I$ as:

$$A - \lambda I = D - \lambda I - [D - A] \equiv (D - \lambda I) - F$$

where D is the diagonal of A and $F = D - A$ is the matrix of off-diagonal entries. Now write

$$A - \lambda I = (D - \lambda I)(I - (D - \lambda I)^{-1}F).$$

From assumptions we have $\|(D - \lambda I)^{-1}F\|_{\infty} < 1$. (Show this). The Lemma in P. 5-3 of notes would then show that $A - \lambda I$ is nonsingular – a contradiction □
Gershgorin’s theorem - example

Find a region of the complex plane where the eigenvalues of the following matrix are located:

\[
A = \begin{pmatrix}
1 & -1 & 0 & 0 \\
0 & 2 & 0 & 1 \\
-1 & -2 & -3 & 1 \\
\frac{1}{2} & \frac{1}{2} & 0 & -4
\end{pmatrix}
\]

Refinement: if disks are all disjoint then each of them contains one eigenvalue.

Refinement: can combine row and column version of the theorem (column version: apply theorem to \(A^H\)).
Application: If A is diagonalizable, $A = P \Lambda P^{-1}$, with Λ = the diagonal matrix of eigenvalues & P = the matrix of eigenvectors, then apply Gerschgorin to $\Lambda + P^{-1}EP = P^{-1}(A + E)P$.

Can apply same to block diagonalizable matrix.
Bauer-Fike theorem

THEOREM [Bauer-Fike] Let $\tilde{\lambda}, \tilde{u}$ be an approximate eigenpair with $\|\tilde{u}\|_2 = 1$, and let $r = A\tilde{u} - \tilde{\lambda}\tilde{u}$ (‘residual vector’). Assume A is diagonalizable: $A = XDX^{-1}$, with D diagonal. Then

$$\exists \lambda \in \Lambda(A) \text{ such that } |\lambda - \tilde{\lambda}| \leq \text{cond}_2(X)\|r\|_2.$$

- Very restrictive result - also not too sharp in general.
- Alternative formulation. If E is a perturbation to A then for any eigenvalue $\tilde{\lambda}$ of $A + E$ there is an eigenvalue λ of A such that:

$$|\lambda - \tilde{\lambda}| \leq \text{cond}_2(X)\|E\|_2.$$

Prove this result from the previous one.
Assume that λ is a simple eigenvalue with right and left eigenvectors u and w^H respectively. Consider the matrices:

$$A(t) = A + tE$$

Eigenvalue $\lambda(t)$, Eigenvector $u(t)$.

Conditioning of λ of A relative to E is

$$\left| \frac{d\lambda(t)}{dt} \right|_{t=0}.$$

Write

$$A(t)u(t) = \lambda(t)u(t)$$

Then multiply both sides to the left by w^H

$$w^H(A + tE)u(t) = \lambda(t)w^Hu(t) \rightarrow$$

$$\lambda(t)w^Hu(t) = w^HAu(t) + tw^HEu(t) = \lambda w^Hu(t) + tw^HEu(t).$$
\[
\frac{\lambda(t) - \lambda}{t} w^H u(t) = w^H E u(t)
\]

Take the limit at \(t = 0 \),

\[\lambda'(0) = \frac{w^H E u}{w^H u}\]

Note: the left and right eigenvectors associated with a simple eigenvalue cannot be orthogonal to each other.

Actual conditioning of an eigenvalue, given a perturbation “in the direction of \(E \)” is \(|\lambda'(0)| \).

In practice only estimate of \(\|E\| \) is available, so

\[
|\lambda'(0)| \leq \frac{\|E u\|_2 \|w\|_2}{| (u, w) |} \leq \|E\|_2 \frac{\|u\|_2 \|w\|_2}{| (u, w) |}
\]
Definition. The condition number of a simple eigenvalue λ of an arbitrary matrix A is defined by

$$\text{cond}(\lambda) = \frac{1}{\cos \theta(u, w)}$$

in which u and w^H are the right and left eigenvectors, respectively, associated with λ.

Example: Consider the matrix

$$A = \begin{pmatrix} -149 & -50 & -154 \\ 537 & 180 & 546 \\ -27 & -9 & -25 \end{pmatrix}$$
\(\Lambda(A) = \{1, 2, 3\} \). Right and left eigenvectors associated with \(\lambda_1 = 1 \):

\[
\begin{pmatrix}
0.3162 \\
-0.9487 \\
0.0
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
0.6810 \\
0.2253 \\
0.6967
\end{pmatrix}
\]

So:

\[\text{cond}(\lambda_1) \approx 603.64 \]

Perturbing \(a_{11} \) to \(-149.01\) yields the spectrum:

\[\{0.2287, 3.2878, 2.4735\} \]

as expected..

For Hermitian (also normal matrices) every simple eigenvalue is well-conditioned, since \(\text{cond}(\lambda) = 1 \).
Perturbations with Multiple Eigenvalues - Example

\[
A = \begin{pmatrix}
1 & 2 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{pmatrix} = I_3 + \begin{pmatrix}
0 & 2 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{pmatrix} = I + 2J
\]

Worst case perturbation is in 3,1 position: set \(J_{31} = \epsilon\).

Eigenvalues of perturbed \(A\) are the roots of

\[
p(\mu) = (\mu - 1)^3 - 4 \cdot \epsilon.
\]

Hence eigenvalues of perturbed \(A\) are \(1 + O(\sqrt[3]{\epsilon})\).

In general, if index of eigenvalue (dimension of largest Jordan block) is \(k\), then an \(O(\epsilon)\) perturbation to \(A\) can lead to \(O(\sqrt{k\epsilon})\) change in eigenvalue. Simple eigenvalue case corresponds to \(k = 1\).
Basic algorithm: The power method

Basic idea is to generate the sequence of vectors $A^k v_0$ where $v_0 \neq 0$ – then normalize.

Most commonly used normalization: ensure that the largest component of the approximation is equal to one.

The Power Method

1. Choose a nonzero initial vector $v^{(0)}$.
2. For $k = 1, 2, \ldots$, until convergence, Do:
3. $v^{(k)} = \frac{1}{\alpha_k} A v^{(k-1)}$ where
4. $\alpha_k = \arg\max_{i=1,\ldots,n} |(A v^{(k-1)})_i|$
5. EndDo

$\arg\max_{i=1,\ldots,n} |x_i| \equiv$ the component x_i with largest modulus
Convergence of the power method

THEOREM Assume there is one eigenvalue λ_1 of A, s.t. $|\lambda_1| > |\lambda_j|$, for $j \neq i$, and that λ_1 is semi-simple. Then either the initial vector $v^{(0)}$ has no component in $\text{Null}(A - \lambda_1 I)$ or $v^{(k)}$ converges to an eigenvector associated with λ_1 and $\alpha_k \to \lambda_1$.

Proof in the diagonalizable case.

- $v^{(k)}$ is vector $A^k v^{(0)}$ normalized by a certain scalar $\hat{\alpha}_k$ in such a way that its largest component is 1.

- Decompose initial vector $v^{(0)}$ in the eigenbasis as:

$$v^{(0)} = \sum_{i=1}^{n} \gamma_i u_i$$

- Each u_i is an eigenvector associated with λ_i.
Note that \(A^k u_i = \lambda_i^k u_i \)

\[
\begin{align*}
v^{(k)} &= \frac{1}{\text{scaling}} \times \sum_{i=1}^{n} \lambda_i^k \gamma_i u_i \\
&= \frac{1}{\text{scaling}} \times \left[\lambda_1^k \gamma_1 u_1 + \sum_{i=2}^{n} \lambda_i^k \gamma_i u_i \right] \\
&= \frac{1}{\text{scaling}'} \times \left[u_1 + \sum_{i=2}^{n} \left(\frac{\lambda_i}{\lambda_1} \right)^k \frac{\gamma_i}{\gamma_1} u_i \right]
\end{align*}
\]

Second term inside bracket converges to zero. QED

Proof suggests that the convergence factor is given by

\[\rho_D = \frac{|\lambda_2|}{|\lambda_1|} \]

where \(\lambda_2 \) is the second largest eigenvalue in modulus.
Example: Consider a ‘Markov Chain’ matrix of size \(n = 55 \). Dominant eigenvalues are \(\lambda = 1 \) and \(\lambda = -1 \) \(\Rightarrow \) the power method applied directly to \(A \) fails. (Why?)

\(\Rightarrow \) We can consider instead the matrix \(I + A \) The eigenvalue \(\lambda = 1 \) is then transformed into the (only) dominant eigenvalue \(\lambda = 2 \)

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Norm of diff.</th>
<th>Res. norm</th>
<th>Eigenvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.639D-01</td>
<td>0.276D-01</td>
<td>1.02591636</td>
</tr>
<tr>
<td>40</td>
<td>0.129D-01</td>
<td>0.513D-02</td>
<td>1.00680780</td>
</tr>
<tr>
<td>60</td>
<td>0.192D-02</td>
<td>0.808D-03</td>
<td>1.00102145</td>
</tr>
<tr>
<td>80</td>
<td>0.280D-03</td>
<td>0.121D-03</td>
<td>1.00014720</td>
</tr>
<tr>
<td>100</td>
<td>0.400D-04</td>
<td>0.174D-04</td>
<td>1.00002078</td>
</tr>
<tr>
<td>120</td>
<td>0.562D-05</td>
<td>0.247D-05</td>
<td>1.00000289</td>
</tr>
<tr>
<td>140</td>
<td>0.781D-06</td>
<td>0.344D-06</td>
<td>1.00000040</td>
</tr>
<tr>
<td>161</td>
<td>0.973D-07</td>
<td>0.430D-07</td>
<td>1.00000005</td>
</tr>
</tbody>
</table>
In previous example shifted A into $B = A + I$ before applying power method. We could also iterate with $B(\sigma) = A + \sigma I$ for any positive σ.

Example: With $\sigma = 0.1$ we get the following improvement.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Norm of diff.</th>
<th>Res. Norm</th>
<th>Eigenvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.273D-01</td>
<td>0.794D-02</td>
<td>1.00524001</td>
</tr>
<tr>
<td>40</td>
<td>0.729D-03</td>
<td>0.210D-03</td>
<td>1.00016755</td>
</tr>
<tr>
<td>60</td>
<td>0.183D-04</td>
<td>0.509D-05</td>
<td>1.00000446</td>
</tr>
<tr>
<td>80</td>
<td>0.437D-06</td>
<td>0.118D-06</td>
<td>1.00000011</td>
</tr>
<tr>
<td>88</td>
<td>0.971D-07</td>
<td>0.261D-07</td>
<td>1.00000002</td>
</tr>
</tbody>
</table>

TB: 24-27; AB: 3.1-3.3; GvL 7.1-7.4, 7.5.2 – Eigen
Question: What is the best shift-of-origin σ to use?

Easy to answer the question when all eigenvalues are real.

Assume all eigenvalues are real and labeled decreasingly:

$$\lambda_1 > \lambda_2 \geq \lambda_2 \geq \cdots \geq \lambda_n,$$

Then: If we shift A to $A - \sigma I$:

The shift σ that yields the best convergence factor is:

$$\sigma_{opt} = \frac{\lambda_2 + \lambda_n}{2}$$

Plot a typical function $\phi(\sigma) = \rho(A - \sigma I)$ as a function of σ. Determine the minimum value and prove the above result.
Inverse Iteration

Observation: The eigenvectors of A and A^{-1} are identical.

- Idea: use the power method on A^{-1}.
- Will compute the eigenvalues closest to zero.
- Shift-and-invert Use power method on $(A - \sigma I)^{-1}$.
- Will compute eigenvalues closest to σ.
- Rayleigh-Quotient Iteration: use $\sigma = \frac{v^TAv}{v^Tv}$ (best approximation to λ given v).
- Advantages: fast convergence in general.
- Drawbacks: need to factor A (or $A - \sigma I$) into LU.