
EIGENVALUE PROBLEMS

• Background on eigenvalues/ eigenvectors / decompositions

• Perturbation analysis, condition numbers..

• Power method

• The QR algorithm

• Practical QR algorithms: use of Hessenberg form and shifts

• The symmetric eigenvalue problem.
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Eigenvalue Problems. Introduction

Let A an n×n real nonsymmetric matrix. The eigenvalue problem:

Ax = λx λ ∈ C : eigenvalue
x ∈ Cn : eigenvector

Types of Problems:

• Compute a few λi ’s with smallest or largest real parts;

• Compute all λi’s in a certain region of C;

• Compute a few of the dominant eigenvalues;

• Compute all λi’s.
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Eigenvalue Problems. Their origins

• Structural Engineering [Ku = λMu]

• Stability analysis [e.g., electrical networks, mechanical system,..]

• Bifurcation analysis [e.g., in fluid flow]

• Electronic structure calculations [Schrödinger equation..]

• Application of new era: page ranking on the world-wide web.
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Basic definitions and properties

A complex scalar λ is called an eigenvalue of a square matrix A if
there exists a nonzero vector u in Cn such that Au = λu. The
vector u is called an eigenvector of A associated with λ. The set
of all eigenvalues of A is the ‘spectrum’ of A. Notation: Λ(A).

ä λ is an eigenvalue iff the columns of A − λI are linearly
dependent.

ä ... equivalent to saying that its rows are linearly dependent. So:
there is a nonzero vector w such that

wH(A− λI) = 0

ä w is a left eigenvector of A (u= right eigenvector)

ä λ is an eigenvalue iff det(A− λI) = 0
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Basic definitions and properties (cont.)

ä An eigenvalue is a root of the Characteristic polynomial:

pA(λ) = det(A− λI)

ä So there are n eigenvalues (counted with their multiplicities).

ä The multiplicity of these eigenvalues as roots of pA are called
algebraic multiplicities.

ä The geometric multiplicity of an eigenvalue λi is the number of
linearly independent eigenvectors associated with λi.
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ä Geometric multiplicity is ≤ algebraic multiplicity.

ä An eigenvalue is simple if its (algebraic) multiplicity is one.

ä It is semi-simple if its geometric and algebraic multiplicities are
equal.

- Consider

A =




1 2 −4
0 1 2
0 0 2




Eigenvalues of A? their algebraic multiplicities? their geometric
multiplicities? Is one a semi-simple eigenvalue?

- Same questions if a33 is replaced by one.

- Same questions if a12 is replaced by zero.
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ä Two matrices A and B are similar if there exists a nonsingular
matrix X such that

A = XBX−1

Definition: A is diagonalizable if it is similar to a diagonal matrix

ä THEOREM: A matrix is diagonalizable iff it has n linearly
independent eigenvectors

ä ... iff all its eigenvalues are semi-simple

ä ... iff its eigenvectors form a basis of Rn

ä Av = λv ⇐⇒ B(X−1v) = λ(X−1v)
eigenvalues remain the same, eigenvectors transformed.
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Other Transformations Preserving Eigenstructure

Shift B = A− σI: Av = λv ⇐⇒ Bv = (λ− σ)v
eigenvalues move, eigenvectors remain the same.

Poly-
nomial

B = p(A) = α0I + · · · + αnA
n: Av = λv ⇐⇒

Bv = p(λ)v
eigenvalues transformed, eigenvectors remain the same.

Invert B = A−1: Av = λv ⇐⇒ Bv = λ−1v
eigenvalues inverted, eigenvectors remain the same.

Shift &
Invert

B = (A − σI)−1: Av = λv ⇐⇒ Bv =
(λ− σ)−1v
eigenvalues transformed, eigenvectors remain the same.
spacing between eigenvalues can be radically changed.
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ä THEOREM (Schur form): Any matrix is unitarily similar to a
triangular matrix, i.e., for any A there exists a unitary matrix Q
and an upper triangular matrix R such that

A = QRQH

ä Any Hermitian matrix is unitarily similar to a real diagonal
matrix, (i.e. its Schur form is real diagonal).

ä It is easy to read off the eigenvalues (including all the multiplic-
ities) from the triangular matrix R

ä Eigenvectors can be obtained by back-solving
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Schur Form – Proof

- Show that there is at least one eigenvalue and eigenvector of A:
Ax = λx, with ‖x‖2 = 1

- There is a unitary transformation P such that Px = e1. How
do you define P ?

- Show that PAPH =

(
λ ∗∗
0 A2

)
.

- Apply process recursively to A2.

- What happens if A is Hermitian?

- Another proof altogether: use Jordan form of A and QR factor-
ization
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Perturbation analysis

ä General questions: If A is perturbed how does an eigenvalue
change? How about an eigenvector?

ä Also: sensitivity of an eigenvalue to perturbations

THEOREM [Gerschgorin]

∀ λ ∈ Λ(A), ∃ i such that |λ− aii| ≤
j=n∑

j=1
j 6=i

|aij| .

ä In words: eigenvalue λ is located in one of the closed discs of the
complex plane centered at aii and with radius ρi =

∑
j 6= i |aij| .
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Proof: By contradiction. If contrary is true then there is one eigen-
value λ that does not belong to any of the disks, i.e., such that
|λ− aii| > ρi for all i. Write matrix A− λI as:

A− λI = D − λI − [D −A] ≡ (D − λI)− F
where D is the diagonal of A and F = D − A is the matrix of
off-diagonal entries. Now write

A− λI = (D − λI)(I − (D − λI)−1F ).

From assumptions we have ‖(D− λI)−1F‖∞ < 1. (Show this).
The Lemma in P. 5-3 of notes would then show that A − λI is
nonsingular – a contradiction �
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Gerschgorin’s theorem - example

- Find a region of the complex plane where the eigenvalues of the
following matrix are located:

A =




1 −1 0 0
0 2 0 1
−1 −2 −3 1

1
2

1
2

0 −4




ä Refinement: if disks are all disjoint then each of them contains
one eigenvalue

ä Refinement: can combine row and column version of the theorem
(column version: apply theorem to AH).
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ä Application: If A is diagonalizable, A = PΛP−1,
with Λ = the diagonal matrix of eigenvalues
& P = the matrix of eigenvectors, then apply Gerschgorin to Λ +
P−1EP = P−1(A+ E)P .

ä Can apply same to block diagonalizable matrix.
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Bauer-Fike theorem

THEOREM [Bauer-Fike] Let λ̃, ũ be an approximate eigenpair with
‖ũ‖2 = 1, and let r = Aũ − λ̃ũ (’residual vector’). Assume
A is diagonalizable: A = XDX−1, with D diagonal. Then

∃ λ ∈ Λ(A) such that |λ− λ̃| ≤ cond2(X)‖r‖2 .

ä Very restrictive result - also not too sharp in general.

ä Alternative formulation. If E is a perturbation to A then for any
eigenvalue λ̃ of A+ E there is an eigenvalue λ of A such that:

|λ− λ̃| ≤ cond2(X)‖E‖2 .

- Prove this result from the previous one.
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Conditioning of Eigenvalues

ä Assume that λ is a simple eigenvalue with right and left eigen-
vectors u and wH respectively. Consider the matrices:

A(t) = A+ tE Eigenvalue λ(t),
Eigenvector u(t).

ä Conditioning of λ of A relative to E is
∣∣∣dλ(t)
dt

∣∣∣
t=0

.

ä Write A(t)u(t) = λ(t)u(t)

ä Then multiply both sides to the left by wH

wH(A+ tE)u(t) = λ(t)wHu(t) →
λ(t)wHu(t) = wHAu(t) + twHEu(t)

= λwHu(t) + twHEu(t).
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→ λ(t)− λ
t

wHu(t) = wHEu(t)

ä Take the limit at t = 0, λ′(0) =
wHEu

wHu

ä Note: the left and right eigenvectors associated with a simple
eigenvalue cannot be orthogonal to each other.

ä Actual conditioning of an eigenvalue, given a perturbation “in
the direction of E” is |λ′(0)|.
ä In practice only estimate of ‖E‖ is available, so

|λ′(0)| ≤ ‖Eu‖2‖w‖2

|(u,w)| ≤ ‖E‖2

‖u‖2‖w‖2

|(u,w)|
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Definition. The condition number of a simple eigenvalue λ of an
arbitrary matrix A is defined by

cond(λ) =
1

cos θ(u,w)

in which u andwH are the right and left eigenvectors, respectively,
associated with λ.

Example: Consider the matrix

A =



−149 −50 −154

537 180 546
−27 −9 −25
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ä Λ(A) = {1, 2, 3}. Right and left eigenvectors associated with
λ1 = 1:

u =




0.3162
−0.9487

0.0


 and w =




0.6810
0.2253
0.6967




So: cond(λ1) ≈ 603.64

ä Perturbing a11 to −149.01 yields the spectrum:

{0.2287, 3.2878, 2.4735}.

ä as expected..

ä For Hermitian (also normal matrices) every simple eigenvalue is
well-conditioned, since cond(λ) = 1.
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Perturbations with Multiple Eigenvalues - Example

ä A =




1 2 0
0 1 2
0 0 1


 = I3 +




0 2 0
0 0 2
0 0 0


 = I + 2J

ä Worst case perturbation is in 3,1 position: set J31 = ε.

ä Eigenvalues of perturbed A are the roots of
p(µ) = (µ− 1)3 − 4 · ε.

ä Hence eigenvalues of perturbed A are 1 + O( 3
√
ε).

ä In general, if index of eigenvalue (dimension of largest Jordan
block) is k, then an O(ε) perturbation to A can lead to O( k

√
ε)

change in eigenvalue. Simple eigenvalue case corresponds to k =
1.
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Basic algorithm: The power method

ä Basic idea is to generate the sequence of vectors Akv0 where
v0 6= 0 – then normalize.

ä Most commonly used normalization: ensure that the largest
component of the approximation is equal to one.

The Power Method
1. Choose a nonzero initial vector v(0).
2. For k = 1, 2, . . . , until convergence, Do:
3. v(k) = 1

αk
Av(k−1) where

4. αk = argmaxi=1,...,n|(Av(k−1))i|
5. EndDo

ä argmaxi=1,..,n|xi| ≡ the component xi with largest modulus
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Convergence of the power method

THEOREM Assume there is one eigenvalue λ1 of A, s.t. |λ1| >
|λj|, for j 6= i, and that λ1 is semi-simple. Then either the initial
vector v(0) has no component in Null(A−λ1I) or v(k) converges
to an eigenvector associated with λ1 and αk → λ1.

Proof in the diagonalizable case.

ä v(k) is = vector Akv(0) normalized by a certain scalar α̂k in
such a way that its largest component is 1.

ä Decompose initial vector v(0)

in the eigenbasis as:
v(0) =

n∑

i=1

γiui

ä Each ui is an eigenvector associated with λi.
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ä Note that Akui = λkiui

v(k) =
1

scaling
×

n∑

i=1

λkiγiui

=
1

scaling
×
[
λk1γ1u1 +

n∑

i=2

λkiγ
k
i ui

]

=
1

scaling′
×
[
u1 +

n∑

i=2

(
λi

λ1

)k γi
γ1

ui

]

ä Second term inside bracket converges to zero. QED

ä Proof suggests that the convergence factor is given by

ρD =
|λ2|
|λ1|

where λ2 is the second largest eigenvalue in modulus.
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Example: Consider a ‘Markov Chain’ matrix of size n = 55.
Dominant eigenvalues are λ = 1 and λ = −1 ä the power
method applied directly to A fails. (Why?)

ä We can consider instead the matrix I+A The eigenvalue λ = 1
is then transformed into the (only) dominant eigenvalue λ = 2

Iteration Norm of diff. Res. norm Eigenvalue
20 0.639D-01 0.276D-01 1.02591636
40 0.129D-01 0.513D-02 1.00680780
60 0.192D-02 0.808D-03 1.00102145
80 0.280D-03 0.121D-03 1.00014720

100 0.400D-04 0.174D-04 1.00002078
120 0.562D-05 0.247D-05 1.00000289
140 0.781D-06 0.344D-06 1.00000040
161 0.973D-07 0.430D-07 1.00000005
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The Shifted Power Method

ä In previous example shifted A into B = A+ I before applying
power method. We could also iterate with B(σ) = A + σI for
any positive σ

Example: With σ = 0.1 we get the following improvement.

Iteration Norm of diff. Res. Norm Eigenvalue
20 0.273D-01 0.794D-02 1.00524001
40 0.729D-03 0.210D-03 1.00016755
60 0.183D-04 0.509D-05 1.00000446
80 0.437D-06 0.118D-06 1.00000011
88 0.971D-07 0.261D-07 1.00000002
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ä Question: What is the best shift-of-origin σ to use?

ä Easy to answer the question when all eigenvalues are real.

Assume all eigenvalues are real and labeled decreasingly:

λ1 > λ2 ≥ λ2 ≥ · · · ≥ λn,
Then: If we shift A to A− σI:

The shift σ that yields the best convergence factor is:

σopt =
λ2 + λn

2

- Plot a typical function φ(σ) = ρ(A − σI) as a function of
σ. Determine the minimum value and prove the above result.
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Inverse Iteration

Observation: The eigenvectors of A and A−1 are identical.

ä Idea: use the power method on A−1.

ä Will compute the eigenvalues closest to zero.

ä Shift-and-invert Use power method on (A− σI)−1 .

ä will compute eigenvalues closest to σ.

ä Rayleigh-Quotient Iteration: use σ = vTAv
vTv

(best approximation to λ given v).

ä Advantages: fast convergence in general.

ä Drawbacks: need to factor A (or A− σI) into LU.
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