The $Q R$ algorithm

$>$ The most common method for solving small (dense) eigenvalue problems. The basic algorithm:

QR without shifts

1. Until Convergence Do:
2. Compute the $Q R$ factorization $\boldsymbol{A}=\boldsymbol{Q R}$
3. Set $\boldsymbol{A}:=\boldsymbol{R Q}$
4. EndDo
> "Until Convergence" means "Until \boldsymbol{A} becomes close enough to an upper triangular matrix"
$>$ Note: $A_{\text {new }}=R Q=Q^{H}(Q R) Q=Q^{H} A Q$
$\boldsymbol{A}_{\text {new }}$ is similar to \boldsymbol{A} throughout the algorithm .
Convergence analysis complicated - but insight: we are implicitly doing a QR factorization of \boldsymbol{A}^{k} :

QR-Factorize: Multiply backward:
Step 1
$A_{0}=Q_{0} R_{0}$
$A_{1}=R_{0} Q_{0}$
Step 2
Step 3:
$A_{1}=Q_{1} R_{1} \quad A_{2}=R_{1} Q_{1}$
$A_{2}=Q_{2} R_{2} \quad A_{3}=R_{2} Q_{2} \quad$ Then:

$$
\begin{aligned}
{\left[Q_{0} Q_{1} Q_{2}\right]\left[R_{2} R_{1} R_{0}\right] } & =Q_{0} Q_{1} A_{2} R_{1} R_{0} \\
& =Q_{0} Q_{1} R_{1} Q_{1} R_{1} R_{0} \\
& =\underbrace{\left(Q_{0} R_{0}\right)}_{A} \underbrace{\left(Q_{0} R_{0}\right)}_{A} \underbrace{\left(Q_{0} R_{0}\right)}_{A}=A^{3}
\end{aligned}
$$

$>\left[Q_{0} Q_{1} Q_{2}\right]\left[R_{2} R_{1} R_{0}\right]==$ QR factorization of A^{3}
> Above basic algorithm is never used as is in practice. Two variations:
(1) Use shift of origin and
(2) Start by transforming \boldsymbol{A} into an Hessenberg matrix

Practical $Q R$ algorithms: Shifts of origin

Observation: (from theory): Last row converges fastest. Convergence is dictated by $\frac{\left|\lambda_{n}\right|}{\left|\lambda_{n-1}\right|}$
$>$ We will now consider only the real symmetric case.
$>$ Eigenvalues are real.
$>\boldsymbol{A}^{(k)}$ remains symmetric throughout process.
$>$ As \boldsymbol{k} goes to infinity the last column and row (except $\boldsymbol{a}_{n n}^{(k)}$) converge to zero quickly.,,
$>$ and $\boldsymbol{a}_{n n}^{(k)}$ converges to lowest eigenvalue.

$$
A^{(k)}=\left(\begin{array}{ccccc|c}
\cdot & \cdot & \cdot & \cdot & \cdot & a \\
\cdot & \cdot & \cdot & \cdot & \cdot & a \\
\cdot & \cdot & \cdot & \cdot & \cdot & a \\
\cdot & \cdot & \cdot & \cdot & \cdot & a \\
\cdot & \cdot & \cdot & \cdot & \cdot & a \\
\hline a & a & a & a & a & a
\end{array}\right)
$$

$>$ Idea: Apply QR algorithm to $A^{(k)}-\mu I$ with $\mu=a_{n n}^{(k)}$. Note: eigenvalues of $\boldsymbol{A}^{(k)}-\boldsymbol{\mu} \boldsymbol{I}$ are shifted by $\boldsymbol{\mu}$, and eigenvectors are the same.

QR with shifts

1. Until row $a_{i n}, 1 \leq i<n$ converges to zero DO:
2. Obtain next shift (e.g. $\boldsymbol{\mu}=\boldsymbol{a}_{n n}$)
3. $\quad A-\mu I=Q R$
4. Set $A:=R Q+\mu I$
5. EndDo
> Convergence (of last row) is cubic at the limit! [for symmetric case]
> Result of algorithm:

$$
\boldsymbol{A}^{(k)}=\left(\begin{array}{ccccc|c}
. & . & . & . & . & 0 \\
. & . & . & . & . & 0 \\
. & . & . & . & . & 0 \\
. & . & . & . & . & 0 \\
. & . & . & . & . & 0 \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \boldsymbol{\lambda}_{n}
\end{array}\right)
$$

> Next step: deflate, i.e., apply above algorithm to $(\boldsymbol{n}-1) \times$ ($n-1$) upper triangular matrix.

Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

$$
a_{i j}=0 \text { for } j<i-1
$$

Observation: The QR algorithm preserves Hessenberg form (tridiagonal form in symmetric case). Results in substantial savings.

Transformation to Hessenberg form
$>$ Want $\boldsymbol{H}_{1} \boldsymbol{A} \boldsymbol{H}_{1}^{T}=\boldsymbol{H}_{1} \boldsymbol{A} \boldsymbol{H}_{1}$ to have the form shown on the right
> Consider the first step only on a 6×6 matrix

$$
\left(\begin{array}{llllll}
\star & \star & \star & \star & \star & \star \\
\star & \star & \star & \star & \star & \star \\
0 & \star & \star & \star & \star & \star \\
0 & \star & \star & \star & \star & \star \\
0 & \star & \star & \star & \star & \star \\
0 & \star & \star & \star & \star & \star
\end{array}\right)
$$

$>$ Choose a \boldsymbol{w} in $\boldsymbol{H}_{1}=\boldsymbol{I}-\mathbf{w} \boldsymbol{w} \boldsymbol{w}^{T}$ to make the first column have zeros from position 3 to \boldsymbol{n}. So $\boldsymbol{w}_{1}=0$.
$>$ Apply to left: $\boldsymbol{B}=\boldsymbol{H}_{1} \boldsymbol{A}$
$>$ Apply to right: $\boldsymbol{A}_{1}=\boldsymbol{B} \boldsymbol{H}_{1}$.
Main observation: the Householder matrix \boldsymbol{H}_{1} which transforms the column $A(2: n, 1)$ into e_{1} works only on rows 2 to n. When applying the transpose H_{1} to the right of $B=H_{1} A$, we observe that only columns 2 to n will be altered. So the first column will retain the desired pattern (zeros below row 2).
$>$ Algorithm continues the same way for columns $2, \ldots, \boldsymbol{n}-2$.

QR for Hessenberg matrices

> Need the "Implicit Q theorem"
Suppose that $Q^{T} A \boldsymbol{Q}$ is an unreduced upper Hessenberg matrix. Then columns 2 to \boldsymbol{n} of \boldsymbol{Q} are determined uniquely (up to signs) by the first column of \boldsymbol{Q}.
$>$ In other words if $\boldsymbol{V}^{T} \boldsymbol{A} \boldsymbol{V}=\boldsymbol{G}$ and $\boldsymbol{Q}^{T} \boldsymbol{A} \boldsymbol{Q}=\boldsymbol{H}$ are both Hessenberg and $V(:, 1)=Q(:, 1)$ then $V(:, i)= \pm Q(:, i)$ for $i=2: n$.
Implication: To compute $A_{i+1}=Q_{i}^{T} A Q_{i}$ we can:
$>$ Compute 1 st column of $\boldsymbol{Q}_{i}[==$ scalar $\times \boldsymbol{A}(:, 1)]$
$>$ Choose other columns so $\boldsymbol{Q}_{i}=$ unitary, and $\boldsymbol{A}_{i+1}=$ Hessenberg.

WII do this with Givens rotations
Example: With $n=6$:

$$
A=\left(\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right)
$$

1. Choose $G_{1}=G\left(1,2, \theta_{1}\right)$ so that $\left(G_{1}^{T} A_{0}\right)_{21}=0$

$$
>A_{1}=G_{1}^{T} A G_{1}=\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
+ & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right)
$$

2. Choose $G_{2}=G\left(2,3, \theta_{2}\right)$ so that $\left(G_{2}^{T} A_{1}\right)_{31}=0$

$$
>A_{2}=G_{2}^{T} A_{1} G_{2}=\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & + & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right)
$$

3. Choose $G_{3}=G\left(3,4, \theta_{3}\right)$ so that $\left(G_{3}^{T} A_{2}\right)_{42}=0$

$$
>A_{3}=G_{3}^{T} A_{2} G_{3}=\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & + & * & *
\end{array}\right)
$$

4. Choose $G_{4}=G\left(4,5, \theta_{4}\right)$ so that $\left(G_{4}^{T} A_{3}\right)_{53}=0$

$$
>A_{4}=G_{4}^{T} A_{3} G_{4}=\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right)
$$

> Process known as "Bulge chasing"
$>$ Similar idea for the symmetric (tridiagonal) case

The symmetric eigenvalue problem: Basic facts

$>$ Consider the Schur form of a real symmetric matrix \boldsymbol{A} :

$$
A=Q R Q^{H}
$$

Since $\boldsymbol{A}^{H}=\boldsymbol{A}$ then $\boldsymbol{R}=\boldsymbol{R}^{\boldsymbol{H}}$

Eigenvalues of \boldsymbol{A} are real

and

There is an orthonormal basis of eigenvectors of \boldsymbol{A}

In addition, \boldsymbol{Q} can be taken to be real when \boldsymbol{A} is real.
$(A-\lambda I)(u+i v)=0 \rightarrow(A-\lambda I) u=0 \&(A-\lambda I) v=0$
> Can select eigenvector to be either \boldsymbol{u} or \boldsymbol{v}

The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly:

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

The eigenvalues of a Hermitian matrix \boldsymbol{A} are characterized by the relation

$$
\lambda_{k}=\max _{S, \text { dim }(S)=k} \min _{x \in S, x \neq 0} \frac{(A x, x)}{(x, x)}
$$

Proof: Preparation: Since \boldsymbol{A} is symmetric real (or Hermitian complex) there is an orthonormal basis of eigenvectors $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{n}$. Express any vector \boldsymbol{x} in this basis as $x=\sum_{i=1}^{n} \alpha_{i} u_{i}$. Then : $(A x, x) /(x, x)=\left[\sum \lambda_{i}\left|\alpha_{i}\right|^{2}\right] /\left[\sum\left|\alpha_{i}\right|^{2}\right]$.
(a) Let S be any subspace of dimension k and let $\mathcal{W}=\operatorname{span}\left\{u_{k}, u_{k+1}, \cdots, u_{n}\right\}$. A dimension argument (used before) shows that $S \cap \mathcal{W} \neq\{0\}$. So there is a
non-zero $\boldsymbol{x}_{\boldsymbol{w}}$ in $\boldsymbol{S} \cap \mathcal{W}$. Express this $\boldsymbol{x}_{\boldsymbol{w}}$ in the eigenbasis as $\boldsymbol{x}_{\boldsymbol{w}}=\sum_{i=k}^{n} \boldsymbol{\alpha}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}$. Then since $\lambda_{i} \leq \lambda_{k}$ for $i \geq k$ we have:

$$
\frac{\left(A x_{w}, x_{w}\right)}{\left(x_{w}, x_{w}\right)}=\frac{\sum_{i=k}^{n} \lambda_{i}\left|\alpha_{i}\right|^{2}}{\sum_{i=k}^{n}\left|\alpha_{i}\right|^{2}} \leq \lambda_{k}
$$

So for any subspace S of dim. k we have $\min _{x \in S, x \neq 0}(A x, x) /(x, x) \leq \lambda_{k}$.
(b) We now take $S_{*}=\operatorname{span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{k}\right\}$. Since $\boldsymbol{\lambda}_{i} \geq \boldsymbol{\lambda}_{\boldsymbol{k}}$ for $\boldsymbol{i} \leq \boldsymbol{k}$, for this particular subspace we have:

$$
\min _{x \in S_{*}, x \neq 0} \frac{(A x, x)}{(x, x)}=\min _{x \in S_{*}, x \neq 0} \frac{\sum_{i=1}^{k} \lambda_{i}\left|\alpha_{i}\right|^{2}}{\sum_{i=k}^{n}\left|\alpha_{i}\right|^{2}}=\lambda_{k}
$$

(c) The results of (a) and (b) imply that the max over all subspaces S of dim. \boldsymbol{k} of $\min _{x \in S, x \neq 0}(A x, x) /(x, x)$ is equal to λ_{k}
> Consequences:

$$
\lambda_{1}=\max _{x \neq 0} \frac{(A x, x)}{(x, x)} \quad \lambda_{n}=\min _{x \neq 0} \frac{(A x, x)}{(x, x)}
$$

$>$ Actually 4 versions of the same theorem. 2nd version:

$$
\lambda_{k}=\min _{S, \operatorname{dim}(S)=n-k+1} \max _{x \in S, x \neq 0} \frac{(A x, x)}{(x, x)}
$$

> Other 2 versions come from ordering eigenvalues increasingly instead of decreasingly.
© Write down all 4 versions of the theorem
© Use the min-max theorem to show that $\|A\|_{2}=\sigma_{1}(A)$ - the largest singular value of \boldsymbol{A}.
$>$ Interlacing Theorem: Denote the $\boldsymbol{k} \times \boldsymbol{k}$ principal submatrix of \boldsymbol{A} as $\boldsymbol{A}_{\boldsymbol{k}}$, with eigenvalues $\left\{\boldsymbol{\lambda}_{i}^{[k]}\right\}_{i=1}^{k}$. Then

$$
\lambda_{1}^{[k]} \geq \lambda_{1}^{[k-1]} \geq \lambda_{2}^{[k]} \geq \lambda_{2}^{[k-1]} \geq \cdots \lambda_{k-1}^{[k-1]} \geq \lambda_{k}^{[k]}
$$

Example: $\boldsymbol{\lambda}_{i}$'s $=$ eigenvalues of $\boldsymbol{A}, \boldsymbol{\mu}_{i}{ }^{\prime}$ s $=$ eigenvalues of \boldsymbol{A}_{n-1} :

Many uses.
> For example: interlacing theorem for roots of orthogonal polynomials

The Law of inertia

$>$ Inertia of a matrix $=[\mathrm{m}, \mathrm{z}, \mathrm{p}]$ with $\boldsymbol{m}=$ number of <0 eigenvalues， $\boldsymbol{z}=$ number of zero eigenvalues，and $\boldsymbol{p}=$ number of >0 eigenvalues．

Sy／vester＇s Law of inertia：If $\boldsymbol{X} \in \mathbb{R}^{n \times n}$ is nonsingular，then \boldsymbol{A} and $\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X}$ have the same inertia．
（⿴囗十凵 Suppose that $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ where L is unit lower triangular， and \boldsymbol{D} diagonal．How many negative eigenvalues does \boldsymbol{A} have？

Q Assume that \boldsymbol{A} is tridiagonal．How many operations are required to determine the number of negative eigenvalues of \boldsymbol{A} ？
$\boxed{\square}$ Devise an algorithm based on the inertia theorem to compute the \boldsymbol{i}-th eigenvalue of a tridiagonal matrix.

Q What is the inertia of the matrix

$$
\left(\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{F} \\
\boldsymbol{F}^{T} & 0
\end{array}\right)
$$

where \boldsymbol{F} is $\boldsymbol{m} \times \boldsymbol{n}$, with $\boldsymbol{n}<\boldsymbol{m}$, and of full rank?
[Hint: use a block LU factorization]

Bisection algorithm for tridiagonal matrices:

$>$ Goal: to compute \boldsymbol{i}-th eigenvalue of \boldsymbol{A} (tridiagonal)
$>$ Get interval $[a, b]$ containing spectrum [Gershgorin]:

$>$ Let $\sigma=(a+b) / 2=$ middle of interval
$>$ Calculate $\boldsymbol{p}=$ number of positive eigenvalues of $\boldsymbol{A}-\boldsymbol{\sigma I}$

- If $p \geq i$ then $\lambda_{i} \in(\sigma, b] \rightarrow$ set $a:=\sigma$

- Else then $\lambda_{i} \in[a, \sigma] \rightarrow$ set $b:=\sigma$

Repeat until $\boldsymbol{b}-\boldsymbol{a}$ is small enough.
13-21
TB: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL 8.1-8.2.3 - Eigen2New

The $Q R$ algorithm for symmetric matrices

> Most important method used : reduce to tridiagonal form and apply the QR algorithm with shifts.
$>$ Householder transformation to Hessenberg form yields a tridiagonal matrix because

$$
\boldsymbol{H} \boldsymbol{A} \boldsymbol{H}^{T}=\boldsymbol{A}_{1}
$$

is symmetric and also of Hessenberg form $>$ it is tridiagonal symmetric.

Tridiagonal form preserved by QR similarity transformation

Practical method

$>$ How to implement the QR algorithm with shifts?
> It is best to use Givens rotations - can do a shifted QR step without explicitly shifting the matrix..
$>$ Two most popular shifts:

$$
s=a_{n n} \text { and } s=\text { smallest e.v. of } A(n-1: n, n-1: n)
$$

Jacobi iteration - Symmetric matrices

> Main idea: Rotation matrices of the form

$$
J(p, q, \theta)=\left(\begin{array}{ccccccc}
1 & \cdots & 0 & & \cdots & 0 & 0 \\
\vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & c & \cdots & s & \cdots & 0 \\
\vdots & \cdots & \vdots & \cdots & \vdots & \vdots & \vdots \\
0 & \cdots & -s & \cdots & c & \cdots & 0 \\
\vdots & \cdots & \vdots & \cdots & \vdots & \cdots & \vdots \\
0 & \cdots & 0 & & \cdots & & 1
\end{array}\right) q
$$

$c=\cos \theta$ and $s=\sin \theta$ are so that $J(p, q, \theta)^{T} A J(p, q, \theta)$ has a zero in position $(\boldsymbol{p}, \boldsymbol{q})$ (and also $(\boldsymbol{q}, \boldsymbol{p})$)
$>$ Frobenius norm of matrix is preserved - but diagonal elements become larger > convergence to a diagonal.
$>$ Let $\boldsymbol{B}=\boldsymbol{J}^{T} \boldsymbol{A} \boldsymbol{J}$ (where $\boldsymbol{J} \equiv \boldsymbol{J}_{p, q, \theta}$).
$>$ Look at 2×2 matrix $B([p, q],[p, q])$ (matlab notation)
$>$ Keep in mind that $a_{p q}=a_{q p}$ and $b_{p q}=b_{q p}$

$$
\begin{aligned}
& \left(\begin{array}{ll}
b_{p p} & b_{p q} \\
b_{q p} & b_{q q}
\end{array}\right)=\left(\begin{array}{cc}
c & -s \\
s & c
\end{array}\right)\left(\begin{array}{ll}
a_{p p} & a_{p q} \\
a_{q p} & a_{q q}
\end{array}\right)\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right) \\
& \left.\begin{array}{l}
=\left(\begin{array}{cc}
c & -s \\
s & c
\end{array}\right)\left[\frac{c a_{p p}-s a_{p q} \mid s a_{p p}+c a_{p q}}{c a_{q p}-s a_{q q}} s a_{p q}+c a_{q q}\right.
\end{array}\right] \\
& {\left[\begin{array}{c|c}
c^{2} a_{p p}+s^{2} a_{q q}-2 s c a_{p q}\left(c^{2}-s^{2}\right) a_{p q}-s c\left(a_{q q}-a_{p p}\right) \\
\hline * & c^{2} a_{q q}+s^{2} a_{p p}+2 s c a_{p q}
\end{array}\right]} \\
& \text { Want: } \\
& \left(c^{2}-s^{2}\right) a_{p q}-s c\left(a_{q q}-a_{p p}\right)=0
\end{aligned}
$$

$$
\frac{c^{2}-s^{2}}{2 s c}=\frac{a_{q q}-a_{p p}}{2 a_{p q}} \equiv \tau
$$

Letting $t=s / c(=\tan \theta) \quad \rightarrow$ quad. equation

$$
t^{2}+2 \tau t-1=0
$$

$>t=-\tau \pm \sqrt{1+\tau^{2}}=\frac{1}{\tau \pm \sqrt{1+\tau^{2}}}$
$>$ Select sign to get a smaller t so $\theta \leq \pi / 4$.
Then :

$$
c=\frac{1}{\sqrt{1+t^{2}}} ; \quad s=c * t
$$

> Implemented in matlab script jacrot (A, p,q) - See HW6.

Define: $\quad \boldsymbol{A}_{O}=\boldsymbol{A}-\operatorname{Diag}(\boldsymbol{A})$
$\equiv \boldsymbol{A}$ 'with its diagonal entries replaced by zeros'
$>$ Observations: (1) Unitary transformations preserve $\|\cdot\|_{F}$. Only changes are in rows and columns \boldsymbol{p} and \boldsymbol{q}.
$>$ Let $B=J^{T} A \boldsymbol{J}$ (where $\boldsymbol{J} \equiv J_{p, q, \theta}$). Then,

$$
a_{p p}^{2}+a_{q q}^{2}+2 a_{p q}^{2}=b_{p p}^{2}+b_{q q}^{2}+2 b_{p q}^{2}=b_{p p}^{2}+b_{q q}^{2}
$$

because $b_{p q}=0$. Then, a little calculation leads to:

$$
\begin{aligned}
\left\|B_{O}\right\|_{F}^{2} & =\|B\|_{F}^{2}-\sum b_{i i}^{2}=\|A\|_{F}^{2}-\sum b_{i i}^{2} \\
& =\|A\|_{F}^{2}-\sum a_{i i}^{2}+\sum a_{i i}^{2}-\sum b_{i i}^{2} \\
& =\left\|A_{O}\right\|_{F}^{2}+\left(a_{p p}^{2}+a_{q q}^{2}-b_{p p}^{2}-b_{q q}^{2}\right) \\
& =\left\|\boldsymbol{A}_{O}\right\|_{F}^{2}-2 a_{p q}^{2}
\end{aligned}
$$

$>\left\|A_{O}\right\|_{F}$ will decrease from one step to the next.
Let $\left\|A_{O}\right\|_{I}=\max _{i \neq j}\left|a_{i j}\right|$. Show that

$$
\left\|A_{O}\right\|_{F} \leq \sqrt{n(n-1)}\left\|A_{O}\right\|_{I}
$$

囚 Use this to show convergence in the case when largest entry is zeroed at each step.

