Inner products and Norms

Inner product of 2 vectors
$>$ Inner product of 2 vectors \boldsymbol{x} and \boldsymbol{y} in $\mathbb{R}^{\boldsymbol{n}}$:

$$
\boldsymbol{x}_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} \text { in } \mathbb{R}^{n}
$$

Notation: $(\boldsymbol{x}, \boldsymbol{y})$ or $\boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{x}$
$>$ For complex vectors

$$
(x, y)=x_{1} \bar{y}_{1}+x_{2} \overline{\boldsymbol{y}}_{2}+\cdots+x_{n} \bar{y}_{n} \text { in } \mathbb{C}^{n}
$$

Note: $(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{y}^{\boldsymbol{H}} \boldsymbol{x}$
\qquad
${ }^{2-1}$

Vector norms

Norms are needed to measure lengths of vectors and closeness of two vectors. Examples of use: Estimate convergence rate of an iterative method; Estimate the error of an approximation to a given solution;A vector norm on a vector space \mathbb{X} is a real-valued function on \mathbb{X}, which satisfies the following three conditions:

1. $\|x\| \geq 0, \quad \forall x \in \mathbb{X}, \quad$ and $\quad\|x\|=0$ iff $\boldsymbol{x}=0$.
2. $\|\alpha x\|=|\alpha|\|x\|, \quad \forall x \in \mathbb{X}, \quad \forall \alpha \in \mathbb{C}$.
3. $\|x+y\| \leq\|x\|+\|y\|, \quad \forall x, y \in \mathbb{X}$.
> Third property is called the triangle inequality.

Properties of Inner Product:

$>(x, y)=\overline{(y, x)}$
$>(\alpha x, y)=\alpha \cdot(x, y)$.
$>(x, x) \geq 0$ is always real and non-negative.
$>(x, x)=0$ iff $x=0$ (for finite dimensional spaces).
$>$ Given $A \in \mathbb{C}^{m \times n}$ then

$$
(A x, y)=\left(x, A^{H} y\right) \quad \forall x \in \mathbb{C}^{n}, \forall y \in \mathbb{C}^{m}
$$

Important example: Euclidean norm on $\mathbb{X}=\mathbb{C}^{n}$,

$$
\|x\|_{2}=(x, x)^{1 / 2}=\sqrt{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\ldots+\left|x_{n}\right|^{2}}
$$Show that when Q is orthogonal then $\|Q \boldsymbol{x}\|_{2}=\|\boldsymbol{x}\|_{2}$

> Most common vector norms in numerical linear algebra: special cases of the Hölder norms (for $p \geq 1$):

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$Find out (bbl search) how to show that these are indeed norms for any $p \geq 1$ (Not easy for 3rd requirement!)

Property: $>$ Limit of $\|\boldsymbol{x}\|_{p}$ when $\boldsymbol{p} \rightarrow \infty$ exists:

$$
\lim _{p \rightarrow \infty}\|x\|_{p}=\max _{i=1}^{n}\left|x_{i}\right|
$$

$>$ Defines a norm denoted by $\|\cdot\|_{\infty}$.
$>$ The cases $p=1, p=2$, and $p=\infty$ lead to the most important norms $\|\cdot\|_{p}$ in practice. These are:

$$
\begin{aligned}
& \|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| \\
& \|x\|_{2}=\left[\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+\left|x_{n}\right|^{2}\right]^{1 / 2} \\
& \|x\|_{\infty}=\max _{i=1, \ldots, n}\left|x_{i}\right|
\end{aligned}
$$

Equivalence of norms:

In finite dimensional spaces $\left(\mathbb{R}^{n}, \mathbb{C}^{n}, ..\right)$ all norms are 'equivalent': if ϕ_{1} and ϕ_{2} are two norms then there exists positive constants α, β such that,

$$
\boldsymbol{\beta} \phi_{2}(x) \leq \phi_{1}(x) \leq \alpha \phi_{2}(x)
$$How can you prove this result? [Hint: Show for $\phi_{2}=\|\cdot\|_{\infty}$]

$>$ We can bound one norm in terms of any other norm.Show that for any $x: \quad \frac{1}{\sqrt{n}}\|x\|_{1} \leq\|x\|_{2} \leq\|x\|_{1}$What are the "unit balls" $B_{p}=\left\{x \mid\|x\|_{p} \leq 1\right\}$ associated with the norms $\|\cdot\|_{p}$ for $p=1,2, \infty$, in \mathbb{R}^{2} ?

The Cauchy-Schwartz inequality (important) is:

$$
|(x, y)| \leq\|x\|_{2}\|y\|_{2}
$$When do you have equality in the above relation?Expand $(\boldsymbol{x}+\boldsymbol{y}, \boldsymbol{x}+\boldsymbol{y})$. What does the Cauchy-Schwarz inequality imply?

$>$ The Hölder inequality (less important for $p \neq 2$) is:

$$
|(x, y)| \leq\|x\|_{p}\|y\|_{q}, \text { with } \frac{1}{p}+\frac{1}{q}=1
$$Second triangle inequality:

$$
|\|x\|-\|y\|| \leq\|x-y\|
$$

\& Consider the metric $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y})=\max _{\boldsymbol{i}}\left|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{y}_{\boldsymbol{i}}\right|$. Show that any norm in \mathbb{R}^{n} is a continuous function with respect to this metric.

2-6 \qquad ${ }^{2-6}$

Convergence of vector sequences

A sequence of vectors $x^{(k)}, k=1, \ldots, \infty$ converges to a vector \boldsymbol{x} with respect to the norm $\|$.$\| if, by definition,$

$$
\lim _{k \rightarrow \infty}\left\|x^{(k)}-x\right\|=0
$$

> Important point: because all norms in \mathbb{R}^{n} are equivalent, the convergence of $\boldsymbol{x}^{(\boldsymbol{k})}$ w.r.t. a given norm implies convergence w.r.t. any other norm.
$>$ Notation:

$$
\lim _{k \rightarrow \infty} x^{(k)}=x
$$

Example: The sequence

$$
x^{(k)}=\left(\begin{array}{c}
1+1 / k \\
\frac{k}{k+\log _{2} k} \\
\frac{1}{k}
\end{array}\right)
$$

converges to

$$
x=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

$>$ Note: Convergence of $\boldsymbol{x}^{(\boldsymbol{k})}$ to \boldsymbol{x} is the same as the convergence of each individual component $x_{i}^{(k)}$ of $\boldsymbol{x}^{(k)}$ to the corresoponding component $\boldsymbol{x}_{\boldsymbol{i}}$ of \boldsymbol{x}.
\qquad

- Given a matrix \boldsymbol{A} in $\mathbb{C}^{m \times n}$, define the set of matrix norms

$$
\|A\|_{p}=\max _{x \in \mathbb{C}^{n}, x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}}
$$

- These norms satisfy the usual properties of vector norms (see previous page).
$>$ The matrix norm $\|\cdot\|_{p}$ is induced by the vector norm $\|\cdot\|_{p}$.
$>$ Again, important cases are for $p=1,2, \infty$.

Matrix norms

> Can define matrix norms by considering $m \times n$ matrices as vectors in $\mathbb{R}^{m n}$. These norms satisfy the usual properties of vector norms, i.e.,

1. $\|A\| \geq 0, \forall A \in \mathbb{C}^{m \times n}$, and $\|A\|=0$ iff $A=0$
2. $\|\alpha A\|=|\alpha|\|A\|, \forall A \in \mathbb{C}^{m \times n}, \forall \alpha \in \mathbb{C}$
3. $\|A+B\| \leq\|A\|+\|B\|, \forall A, B \in \mathbb{C}^{m \times n}$.
> However, these will lack (in general) the right properties for composition of operators (product of matrices).
$>$ The case of $\|\cdot\|_{2}$ yields the Frobenius norm of matrices.
$\xrightarrow{2-10}$ TB 3; GvL 2.2-2.3; AB: 1.1.7 - Norms
${ }^{2-10}$

Consistency / sub-mutiplicativity of matrix norms

$>$ A fundamental property of matrix norms is consistency

$$
\|A B\|_{p} \leq\|A\|_{p}\|B\|_{p}
$$

[Also termed "sub-multiplicativity"]
$>$ Consequence: $\left\|\boldsymbol{A}^{k}\right\|_{p} \leq\|\boldsymbol{A}\|_{p}^{k}$
$>\boldsymbol{A}^{k}$ converges to zero if any of its p-norms is <1
[Note: sufficient but not necessary condition]

Frobenius norms of matrices

$>$ The Frobenius norm of a matrix is defined by

$$
\|A\|_{F}=\left(\sum_{j=1}^{n} \sum_{i=1}^{m}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

$>$ Same as the 2 -norm of the column vector in $\mathbb{C}^{m n}$ consisting of all the columns (respectively rows) of \boldsymbol{A}.
> This norm is also consistent [but not induced from a vector norm]

Expressions of standard matrix norms

$>$ Recall the notation: (for square $n \times n$ matrices)
$\rho(A)=\max \left|\lambda_{i}(A)\right| ; \quad \operatorname{Tr}(A)=\sum_{i=1}^{n} a_{i i}=\sum_{i=1}^{n} \lambda_{i}(A)$ where $\lambda_{i}(A), i=1,2, \ldots, n$ are all eigenvalues of A

$$
\begin{aligned}
& \|A\|_{1}=\max _{j=1, \ldots, n} \sum_{i=1}^{m}\left|a_{i j}\right| \\
& \|A\|_{\infty}=\max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i j}\right| \\
& \|A\|_{2}=\left[\rho\left(A^{H} A\right)\right]^{1 / 2}=\left[\rho\left(A A^{H}\right)\right]^{1 / 2} \\
& \|A\|_{F}=\left[\operatorname{Tr}\left(A^{H} A\right)\right]^{1 / 2}=\left[\operatorname{Tr}\left(A A^{H}\right)\right]^{1 / 2} .
\end{aligned}
$$Compute the Frobenius norms of the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0 \\
3 & 2
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & 2 & -1 \\
-1 & \sqrt{5} & 0 \\
-1 & 1 & \sqrt{2}
\end{array}\right)
$$Prove that the Frobenius norm is consistent [Hint: Use CauchySchwartz]Define the 'vector 1 -norm' of a matrix \boldsymbol{A} as the 1 -norm of the vector of stacked columns of \boldsymbol{A}. Is this norm a consistent matrix norm?

[Hint: Result is true - Use Cauchy-Schwarz to prove it.]
\qquad
2-14

Eigenvalues of $\boldsymbol{A}^{H} \boldsymbol{A}$ are real ≥ 0. Their square roots are singular values of \boldsymbol{A}. To be covered later.
$>\|\boldsymbol{A}\|_{2}==$ the largest singular value of \boldsymbol{A} and $\|\boldsymbol{A}\|_{F}=$ the 2 -norm of the vector of all singular values of \boldsymbol{A}.Compute the p-norm for $\boldsymbol{p}=1,2, \infty, \boldsymbol{F}$ for the matrix

$$
A=\left(\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right)
$$Show that $\rho(A) \leq\|A\|$ for any matrix norm.Is $\rho(A)$ a norm?

1. $\boldsymbol{\rho}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}$ when \boldsymbol{A} is Hermitian $\left(\boldsymbol{A}^{H}=\boldsymbol{A}\right)$. $>$ True for this particular case...
2. ... However, not true in general. For

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

we have $\rho(A)=0$ while $A \neq 0$. Also, triangle inequality not satisfied for the pair \boldsymbol{A}, and $B=A^{T}$. Indeed, $\rho(A+B)=$ 1 while $\rho(A)+\rho(B)=0$.

Show that the result is true for any orthogonal matrix Q (Q has orthonomal columns), i.e., when $Q \in \mathbb{C}^{p \times m}$ with $p>m$

Let $Q \in \mathbb{C}^{n \times n}$. Do we have $\|A Q\|_{2}=\|A\|_{2}$? $\|A Q\|_{F}=$ $\|A\|_{F}$? What if $Q \in \mathbb{C}^{n \times p}$, with $p<n$?

2-18 TB 3; GvL 2.2-2.3; AB: 1.1.7- Norms

