Inner products and Norms

Inner product of 2 vectors

 \blacktriangleright Inner product of 2 vectors x and y in \mathbb{R}^n :

$$x_1y_1+x_2y_2+\cdots+x_ny_n$$
 in \mathbb{R}^n

Notation: (x,y) or y^Tx

➤ For complex vectors

$$(x,y)=x_1ar{y}_1+x_2ar{y}_2+\cdots+x_nar{y}_n$$
 in \mathbb{C}^n

Note: $(x,y) = y^H x$

TB 3; GvL 2.2-2.3; AB: 1.1.7 – Norms

2-1

Properties of Inner Product:

- $ightharpoonup (x,y) = \overline{(y,x)}$.
- $ightharpoonup (\alpha x, y) = \alpha \cdot (x, y).$
- $ightarrow (x,x) \geq 0$ is always real and non-negative.
- (x,x)=0 iff x=0 (for finite dimensional spaces).
- ightharpoonup Given $A \in \mathbb{C}^{m \times n}$ then

$$(Ax,y)=(x,A^Hy) \quad \forall \ x \ \in \ \mathbb{C}^n, \forall y \ \in \ \mathbb{C}^m$$

TB 3; GvL 2.2-2.3; AB: 1.1.7 – Norms

2-2

Vector norms

Norms are needed to measure lengths of vectors and closeness of two vectors. Examples of use: Estimate convergence rate of an iterative method; Estimate the error of an approximation to a given solution; ...

- ightharpoonup A vector norm on a vector space $\mathbb X$ is a real-valued function on $\mathbb X$, which satisfies the following three conditions:
- 1. $||x|| \ge 0$, $\forall x \in \mathbb{X}$, and ||x|| = 0 iff x = 0.
- 2. $\|\alpha x\| = |\alpha| \|x\|, \quad \forall \ x \in \mathbb{X}, \quad \forall \alpha \in \mathbb{C}.$
- 3. $||x + y|| \le ||x|| + ||y||$, $\forall x, y \in X$.
- ➤ Third property is called the triangle inequality.

Important example: Euclidean norm on $\mathbb{X} = \mathbb{C}^n$,

$$\|x\|_2 = (x,x)^{1/2} = \sqrt{|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2}$$

lacksquare Show that when $oldsymbol{Q}$ is orthogonal then $\|oldsymbol{Q}x\|_2=\|x\|_2$

Most common vector norms in numerical linear algebra: special cases of the Hölder norms (for p > 1):

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p}.$$

Find out (bbl search) how to show that these are indeed norms for any $p \geq 1$ (Not easy for 3rd requirement!)

TB 3; GvL 2.2-2.3; AB: 1.1.7 – Norms

Property:

 \blacktriangleright Limit of $||x||_p$ when $p \to \infty$ exists:

$$\lim_{p o \infty} \|x\|_p = \max_{i=1}^n |x_i|$$

- \triangleright Defines a norm denoted by $\|\cdot\|_{\infty}$.
- The cases p=1, p=2, and $p=\infty$ lead to the most important norms $\|\cdot\|_p$ in practice. These are:

$$\|x\|_1 = |x_1| + |x_2| + \cdots + |x_n|, \ \|x\|_2 = \left[|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2\right]^{1/2}, \ \|x\|_\infty = \max_{i=1,...,n} |x_i|.$$

2-5

TB 3; GvL 2.2-2.3; AB: 1.1.7 – Norms

2-5

➤ The Cauchy-Schwartz inequality (important) is:

$$|(x,y)| \leq ||x||_2 ||y||_2.$$

- When do you have equality in the above relation?
- Expand (x + y, x + y). What does the Cauchy-Schwarz inequality imply?
- ightharpoonup The Hölder inequality (less important for $p \neq 2$) is:

$$|(x,y)| \leq \|x\|_p \|y\|_q$$
 , with $rac{1}{p} + rac{1}{q} = 1$

- Second triangle inequality: $||x|| ||y|| | \le ||x y||$.
- Consider the metric $d(x,y)=max_i|x_i-y_i|$. Show that any norm in \mathbb{R}^n is a continuous function with respect to this metric.

2-6

TB 3; GvL 2.2-2.3; AB: 1.1.7 – Norms

2-6

Equivalence of norms:

In finite dimensional spaces $(\mathbb{R}^n, \mathbb{C}^n, ...)$ all norms are 'equivalent': if ϕ_1 and ϕ_2 are two norms then there exists positive constants α, β such that,

$$\beta \phi_2(x) \le \phi_1(x) \le \alpha \phi_2(x)$$

- \blacktriangle How can you prove this result? [Hint: Show for $\phi_2 = \|.\|_{\infty}$]
- We can bound one norm in terms of any other norm.
- Show that for any x: $\frac{1}{\sqrt{n}} \|x\|_1 \leq \|x\|_2 \leq \|x\|_1$
- What are the "unit balls" $B_p=\{x\mid \|x\|_p\leq 1\}$ associated with the norms $\|.\|_p$ for $p=1,2,\infty$, in \mathbb{R}^2 ?

Convergence of vector sequences

A sequence of vectors $x^{(k)}$, $k=1,\ldots,\infty$ converges to a vector x with respect to the norm $\|\cdot\|$ if, by definition,

$$\lim_{k o\infty}\ \|x^{(k)}-x\|=0$$

- Important point: because all norms in \mathbb{R}^n are equivalent, the convergence of $x^{(k)}$ w.r.t. a given norm implies convergence w.r.t. any other norm.
- ➤ Notation:

$$\lim_{k \to \infty} x^{(k)} = x$$

TB 3; GvL 2.2-2.3; AB: 1.1.7 - Norms

TB 3; GvL 2.2-2.3; AB: 1.1.7 - Norms

Example: The sequence

$$x^{(k)} = egin{pmatrix} 1+1/k \ rac{k}{k+\log_2 k} \ rac{1}{k} \end{pmatrix}$$

converges to

$$x = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Note: Convergence of $x^{(k)}$ to x is the same as the convergence of each individual component $x_i^{(k)}$ of $x^{(k)}$ to the corresponding component x_i of x.

9 TB 3; GvL 2.2-2.3; AB: 1.1.7 – Norms

2-9

ightharpoonup Given a matrix A in $\mathbb{C}^{m\times n}$, define the set of matrix norms

$$\|A\|_p = \max_{x \in \mathbb{C}^n, \; x
eq 0} rac{\|Ax\|_p}{\|x\|_p}.$$

- These norms satisfy the usual properties of vector norms (see previous page).
- \blacktriangleright The matrix norm $\|.\|_p$ is induced by the vector norm $\|.\|_p$.
- \blacktriangleright Again, important cases are for $p=1,2,\infty$.

Matrix norms

ightharpoonup Can define matrix norms by considering $m \times n$ matrices as vectors in \mathbb{R}^{mn} . These norms satisfy the usual properties of vector norms, i.e.,

- 1. $||A|| \geq 0$, $\forall A \in \mathbb{C}^{m \times n}$, and ||A|| = 0 iff A = 0
- 2. $\|\alpha A\| = |\alpha| \|A\|, \forall A \in \mathbb{C}^{m \times n}, \ \forall \ \alpha \in \mathbb{C}$
- 3. $||A + B|| \le ||A|| + ||B||, \forall A, B \in \mathbb{C}^{m \times n}$.
- ➤ However, these will lack (in general) the right properties for composition of operators (product of matrices).
- \triangleright The case of $\|.\|_2$ yields the Frobenius norm of matrices.

2-10 TB 3; GvL 2.2-2.3; AB: 1.1.7 – Norms

2-10

Consistency / sub-mutiplicativity of matrix norms

➤ A fundamental property of matrix norms is consistency

$$||AB||_p \leq ||A||_p ||B||_p$$
.

[Also termed "sub-multiplicativity"]

- lacksquare Consequence: $\|A^k\|_p \leq \|A\|_p^k$
- $ightharpoonup A^k$ converges to zero if any of its p-norms is < 1

[Note: sufficient but not necessary condition]

Frobenius norms of matrices

➤ The Frobenius norm of a matrix is defined by

$$\|A\|_F = \left(\sum_{j=1}^n \sum_{i=1}^m |a_{ij}|^2\right)^{1/2}.$$

- Same as the 2-norm of the column vector in \mathbb{C}^{mn} consisting of all the columns (respectively rows) of A.
- ➤ This norm is also consistent [but not induced from a vector norm]

TB 3; GvL 2.2-2.3; AB: 1.1.7 – Norms

2-13

Compute the Frobenius norms of the matrices

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 3 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & -1 \\ -1 & \sqrt{5} & 0 \\ -1 & 1 & \sqrt{2} \end{pmatrix}$$

Prove that the Frobenius norm is consistent [Hint: Use Cauchy-Schwartz]

Define the 'vector 1-norm' of a matrix A as the 1-norm of the vector of stacked columns of A. Is this norm a consistent matrix norm?

[Hint: Result is true – Use Cauchy-Schwarz to prove it.]

TB 3; GvL 2.2-2.3; AB: 1.1.7 – Norms

2-14

Expressions of standard matrix norms

Recall the notation: (for square $n \times n$ matrices) $ho(A) = \max |\lambda_i(A)|; \quad Tr(A) = \sum_{i=1}^n a_{ii} = \sum_{i=1}^n \lambda_i(A)$ where $\lambda_i(A), i = 1, 2, \ldots, n$ are all eigenvalues of A

$$\|A\|_1 = \max_{j=1,...,n} \sum_{i=1}^m |a_{ij}|, \ \|A\|_\infty = \max_{i=1,...,m} \sum_{j=1}^n |a_{ij}|, \ \|A\|_2 = \left[
ho(A^HA)
ight]^{1/2} = \left[
ho(AA^H)
ight]^{1/2}, \ \|A\|_F = \left[Tr(A^HA)
ight]^{1/2} = \left[Tr(AA^H)
ight]^{1/2}.$$

TB 3; GvL 2.2-2.3; AB: 1.1.7 - Norms

- ightharpoonup Eigenvalues of A^HA are real ≥ 0 . Their square roots are singular values of A. To be covered later.
- $\|A\|_2 ==$ the largest singular value of A and $\|A\|_F =$ the 2-norm of the vector of all singular values of A.

 \bigtriangleup Compute the p-norm for $p=1,2,\infty,F$ for the matrix

$$A = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$$

Show that $\rho(A) \leq ||A||$ for any matrix norm.

 \triangle Is $\rho(A)$ a norm?

- 1. $\rho(A) = \|A\|_2$ when A is Hermitian $(A^H = A)$. \blacktriangleright True for this particular case...
- 2. ... However, not true in general. For

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

we have $\rho(A)=0$ while $A\neq 0$. Also, triangle inequality not satisfied for the pair A, and $B=A^T$. Indeed, $\rho(A+B)=1$ while $\rho(A)+\rho(B)=0$.

TB 3; GvL 2.2-2.3; AB: 1.1.7 - Norms

2-

A few properties of the 2-norm and the F-norm

- ightharpoonup Let $A = uv^T$. Then $||A||_2 = ||u||_2 ||v||_2$
- Prove this result
- In this case $||A||_F = ??$

For any $A\in\mathbb{C}^{m imes n}$ and unitary matrix $Q\in\mathbb{C}^{m imes m}$ we have $\|QA\|_2=\|A\|_2;\quad \|QA\|_F=\|A\|_F.$

- Show that the result is true for any orthogonal matrix Q (Q has orthonomal columns), i.e., when $Q \in \mathbb{C}^{p \times m}$ with p > m
- Let $Q \in \mathbb{C}^{n \times n}$. Do we have $\|AQ\|_2 = \|A\|_2$? $\|AQ\|_F = \|A\|_F$? What if $Q \in \mathbb{C}^{n \times p}$, with p < n?

TB 3; GvL 2.2-2.3; AB: 1.1.7 – Norms

-18