FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

- Brief review of floating point arithmetic
- Model of floating point arithmetic
- Notation, backward and forward errors

Roundoff errors and floating-point arithmetic

The basic problem: The set A of all possible representable numbers on a given machine is finite - but we would like to use this set to perform standard arithmetic operations (+,*,-,/) on an infinite set. The usual algebra rules are no longer satisfied since results of operations are rounded.

Basic algebra breaks down in floating point arithmetic.

Example: In floating point arithmetic.

$$a + (b + c)! = (a + b) + c$$

Matlab experiment: For 10,000 random numbers find number of instances when the above is true. Same thing for the multiplication..

TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1–.2 – Float

Floating point representation:

4-3

Real numbers are represented in two parts: A mantissa (significand) and an exponent. If the representation is in the base β then:

$$x=\pm (.d_1d_2\cdots d_t)eta^e$$

 $\blacktriangleright .d_1d_2 \cdots d_t$ is a fraction in the base- β representation (Generally the form is normalized in that $d_1 \neq 0$), and e is an integer

Often, more convenient to rewrite the above as:

$$x = \pm (m/\beta^t) imes eta^e \equiv \pm m imes eta^{e-t}$$

 \blacktriangleright Mantissa m is an integer with $0 \leq m \leq eta^t - 1$.

Machine precision - machine epsilon

Notation : fl(x) = closest floating point representation of real number x ('rounding')

When a number x is very small, there is a point when 1+x == 1 in a machine sense. The computer no longer makes a difference between 1 and 1 + x.

Machine epsilon: The smallest number ϵ such that $1 + \epsilon$ is a float that is different from one, is called machine epsilon. Denoted by macheps or eps, it represents the distance from 1 to the next larger floating point number.

• With previous representation, eps is equal to $\beta^{-(t-1)}$.

Example: In IEEE standard double precision, $\beta = 2$, and t = 53 (includes 'hidden bit'). Therefore eps $= 2^{-52}$.

Unit Round-off A real number x can be approximated by a floating number fl(x) with relative error no larger than $\underline{\mathbf{u}} = \frac{1}{2}\beta^{-(t-1)}$.

 \blacktriangleright <u>u</u> is called Unit Round-off.

In fact can easily show:

4-5

$$fl(x) = x(1+\delta)$$
 with $|\delta| < {
m u}$

Matlab experiment: find the machine epsilon on your computer.

► Many discussions on what conditions/ rules should be satisfied by floating point arithmetic. The IEEE standard is a set of standards adopted by many CPU manufacturers.

4-6

$$fl(x) = x(1+\epsilon), \hspace{0.2cm}$$
 where $|\epsilon| \leq \underline{\mathrm{u}}$

Rule 2. For all operations
$$\odot$$
 (one of $+, -, *, /$)

$$fl(x \odot y) = (x \odot y)(1 + \epsilon_{\odot}), \text{ where } |\epsilon_{\odot}| \leq \underline{\mathrm{u}}$$

$$fl(a \odot b) = fl(b \odot a)$$

Matlab experiment: Verify experimentally Rule 3 with 10,000 randomly generated numbers a_i , b_i .

Example: Consider the sum of 3 numbers:
$$y = a + b + c$$
.
> Done as $fl(fl(a + b) + c)$
 $\eta = fl(a + b) = (a + b)(1 + \epsilon_1)$
 $y_1 = fl(\eta + c) = (\eta + c)(1 + \epsilon_2)$
 $= [(a + b)(1 + \epsilon_1) + c](1 + \epsilon_2)$
 $= [(a + b + c) + (a + b)\epsilon_1)](1 + \epsilon_2)$
 $= (a + b + c) \left[1 + \frac{a + b}{a + b + c}\epsilon_1(1 + \epsilon_2) + \epsilon_2\right]$

So disregarding the high order term $\epsilon_1\epsilon_2$

$$fl(fl(a+b)+c) = (a+b+c)(1+\epsilon_3)
onumber \ \epsilon_3 pprox rac{a+b}{a+b+c}\epsilon_1+\epsilon_2$$

TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float

> If we redid the computation as $y_2 = fl(a + fl(b + c))$ we would find

$$fl(a+fl(b+c)) = (a+b+c)(1+\epsilon_4) \ \epsilon_4 pprox rac{b+c}{a+b+c}\epsilon_1+\epsilon_2$$

The error is amplified by the factor (a + b)/y in the first case and (b + c)/y in the second case.

▶ In order to sum *n* numbers accurately, it is better to start with small numbers first. [However, sorting before adding is not worth it.]

But watch out if the numbers have mixed signs!

TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1–.2 – Float

The absolute value notation

For a given vector x, |x| is the vector with components $|x_i|$, i.e., |x| is the component-wise absolute value of x.

Similarly for matrices:

$$|A| = \{|a_{ij}|\}_{i=1,...,m;\;j=1,...,n}$$

An obvious result: The basic inequality

$$|fl(a_{ij}) - a_{ij}| \leq \underline{\mathrm{u}} |a_{ij}|$$

translates into

$$fl(A) = A + E$$
 with $|E| \leq \underline{\mathrm{u}} |A|$

$$\blacktriangleright A \leq B \text{ means } a_{ij} \leq b_{ij} \text{ for all } 1 \leq i \leq m; \ 1 \leq j \leq n$$

Backward and forward errors

Assume the approximation \hat{y} to y = alg(x) is computed by some algorithm with arithmetic precision ϵ . Possible analysis: find an upper bound for the Forward error

$$|\Delta y| = |y - \hat{y}|$$

This is not always easy.

4-10

Alternative question: find equivalent perturbation on initial data (x) that produces the result \hat{y} . In other words, find Δx so that:

$$\mathsf{alg}(x+\Delta x)=\hat{y}$$

The value of $|\Delta x|$ is called the backward error. An analysis to find an upper bound for $|\Delta x|$ is called Backward error analysis.

Example: $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \quad B = \begin{pmatrix} d & e \\ 0 & f \end{pmatrix}$

Consider the product: fl(A.B) =

$$egin{bmatrix} ad(1+\epsilon_1) & \left[ae(1+\epsilon_2)+bf(1+\epsilon_3)
ight](1+\epsilon_4) \ 0 & cf(1+\epsilon_5) \end{bmatrix}$$

with $\epsilon_i \leq \underline{\mathbf{u}}$, for i = 1, ..., 5. Result can be written as:

$$egin{bmatrix} a & b(1+\epsilon_3)(1+\epsilon_4) \ \hline 0 & c(1+\epsilon_5) \end{bmatrix} egin{bmatrix} d(1+\epsilon_1) & e(1+\epsilon_2)(1+\epsilon_4) \ \hline 0 & f \end{bmatrix}$$

> So
$$fl(A.B) = (A + E_A)(B + E_B)$$
.

Backward errors
$$E_A, E_B$$
 satisfy:
 $|E_A| \le 2\underline{\mathrm{u}} |A| + O(\underline{\mathrm{u}}^2)$; $|E_B| \le 2\underline{\mathrm{u}} |B| + O(\underline{\mathrm{u}}^2)$

TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float

> When solving Ax = b by Gaussian Elimination, we will see that a bound on $||e_x||$ such that this holds exactly:

 $A(x_{ ext{computed}}+e_x)=b$

is much harder to find than bounds on $||E_A||$, $||e_b||$ such that this holds exactly:

$$(A + E_A)x_{\text{computed}} = (b + e_b).$$

Note: In many instances backward errors are more meaningful than forward errors: if initial data is accurate only to 4 digits say, then my algorithm for computing x need not guarantee a backward error of less then 10^{-10} for example. A backward error of order 10^{-4} is acceptable.

TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1–.2 – Float

Error Analysis: Inner product

Inner products are in the innermost parts of many calculations. Their analysis is important.

Lemma: If $|\delta_i| \leq \underline{\mathbf{u}}$ and $n\underline{\mathbf{u}} < 1$ then $\Pi_{i=1}^n (1+\delta_i) = 1 + \theta_n \quad \text{where} \quad |\theta_n| \leq \frac{n\underline{\mathbf{u}}}{1-n\underline{\mathbf{u}}}$

> Common notation $\gamma_n \equiv \frac{n\underline{\mathbf{u}}}{1-n\underline{\mathbf{u}}}$

4-13

Prove the lemma [Hint: use induction]

Can use the following simpler result:

Lemma: If
$$|\delta_i| \leq \underline{u}$$
 and $n\underline{u} < .01$ then
 $\Pi_{i=1}^n (1 + \delta_i) = 1 + \theta_n$ where $|\theta_n| \leq 1.01 n\underline{u}$

Example: Previous sum of numbers can be written $fl(a + b + c) = a(1 + \epsilon_1)(1 + \epsilon_2) + b(1 + \epsilon_1)(1 + \epsilon_2) + c(1 + \epsilon_2) + b(1 + \epsilon_1)(1 + \epsilon_2) + c(1 + \epsilon_2) + c(1 + \epsilon_3) = a(1 + \epsilon_1) + b(1 + \epsilon_2) + c(1 + \epsilon_3) = exact sum of slightly perturbed inputs,$

where all θ_i 's satisfy $|\theta_i| \leq 1.01 n \underline{\mathrm{u}}$ (here n = 2).

Alternatively, can write 'forward' bound:

$$|fl(a + b + c) - (a + b + c)| \le |a\theta_1| + |b\theta_2| + |c\theta_3|.$$
TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float

Analysis of inner products (cont.)

4-15

Consider
$$s_n = fl(x_1 * y_1 + x_2 * y_2 + \cdots + x_n * y_n)$$

In what follows
$$\eta_i$$
's come from *, ϵ_i 's comme from +
They satisfy: $|\eta_i| \leq \underline{u}$ and $|\epsilon_i| \leq \underline{u}$.
The inner product s_n is computed as:
1. $s_1 = fl(x_1y_1) = (x_1y_1)(1 + \eta_1)$
2. $s_2 = fl(s_1 + fl(x_2y_2)) = fl(s_1 + x_2y_2(1 + \eta_2))$
 $= (x_1y_1(1 + \eta_1) + x_2y_2(1 + \eta_2))(1 + \epsilon_2)$
 $= x_1y_1(1 + \eta_1)(1 + \epsilon_2) + x_2y_2(1 + \eta_2)(1 + \epsilon_2)$
3. $s_3 = fl(s_2 + fl(x_3y_3)) = fl(s_2 + x_3y_3(1 + \eta_3))$
 $= (s_2 + x_3y_3(1 + \eta_3))(1 + \epsilon_3)$

Expand:
$$s_3 = x_1 y_1 (1 + \eta_1) (1 + \epsilon_2) (1 + \epsilon_3) + x_2 y_2 (1 + \eta_2) (1 + \epsilon_2) (1 + \epsilon_3) + x_3 y_3 (1 + \eta_3) (1 + \epsilon_3)$$

 \blacktriangleright Induction would show that [with convention that $\epsilon_1 \equiv 0]$

$$s_n = \sum_{i=1}^n x_i y_i (1+\eta_i) \; \prod_{j=i}^n (1+\epsilon_j)$$

Q:How many terms in the coefficient of $x_i y_i$ do we have? \bullet When i > 1 : 1 + (n - i + 1) = n - i + 2A:When i = 1 : n (since $\epsilon_1 = 0$ does not count) \bullet Bottom line: always $\leq n$.4-16TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float

For each of these products
$$(1 + \eta_i) \prod_{j=i}^n (1 + \epsilon_j) = 1 + \theta_i, \quad \text{with} \quad |\theta_i| \leq \gamma_n \underline{u} \quad \text{so:}$$

$$s_n = \sum_{i=1}^n x_i y_i (1 + \theta_i) \quad \text{with} \quad |\theta_i| \leq \gamma_n \quad \text{or:}$$

$$fl\left(\sum_{i=1}^n x_i y_i\right) = \sum_{i=1}^n x_i y_i + \sum_{i=1}^n x_i y_i \theta_i \quad \text{with} \quad |\theta_i| \leq \gamma_n$$

$$\text{This leads to the final result (forward form)}$$

$$\left|fl\left(\sum_{i=1}^n x_i y_i\right) - \sum_{i=1}^n x_i y_i\right| \leq \gamma_n \sum_{i=1}^n |x_i| |y_i|$$

$$\text{ or (backward form)}$$

$$fl\left(\sum_{i=1}^n x_i y_i\right) = \sum_{i=1}^n x_i y_i (1 + \theta_i) \quad \text{with} \quad |\theta_i| \leq \gamma_n$$

TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1–.2 – Float

Main result on inner products:

Backward error expression:

4-18

$$fl(x^Ty) = [x \cdot (1 + d_x)]^T [y \cdot (1 + d_y)]$$

where $\|d_{\Box}\|_{\infty} \leq 1.01 n \underline{\mathrm{u}}$, $\Box = x, y$.

> Can show equality valid even if one of the d_x, d_y absent.

► Forward error expression: $|fl(x^Ty) - x^Ty| \le \gamma_n |x|^T |y|$ with $0 \le \gamma_n \le 1.01n\underline{u}$.

 \blacktriangleright Elementwise absolute value |x| and multiply $\cdot *$ notation.

> Above assumes $n\underline{u} \leq .01$. For $\underline{u} = 2.0 \times 10^{-16}$, this holds for $n \leq 4.5 \times 10^{13}$.

Consequence of lemma:

4-19

$$|fl(A*B)-A*B|\leq \gamma_n |A|*|B|$$

> Another way to write the result (less precise) is

$$|fl(x^Ty) - x^Ty| \leq n \underline{\mathrm{u}} |x|^T |y| + O(\underline{\mathrm{u}}^{\,2})$$

Assume you use single precision for which you have $\underline{\mathbf{u}} = 2. \times 10^{-6}$. What is the largest n for which $n\underline{\mathbf{u}} \leq 0.01$ holds? Any conclusions for the use of single precision arithmetic?

Multiply What does the main result on inner products imply for the case when y = x? [Contrast the relative accuracy you get in this case vs. the general case when $y \neq x$]

 \checkmark Show for any x, y, there exist $\Delta x, \Delta y$ such that

$$egin{aligned} fl(x^Ty) &= (x+\Delta x)^Ty, & ext{with} & |\Delta x| \leq \gamma_n |x| \ fl(x^Ty) &= x^T(y+\Delta y), & ext{with} & |\Delta y| \leq \gamma_n |y| \end{aligned}$$

(Continuation) Let A an m imes n matrix, x an n-vector, and y = Ax. Show that there exist a matrix ΔA such

 $fl(y) = (A + \Delta A)x, \hspace{0.2cm}$ with $\hspace{0.2cm} |\Delta A| \leq \gamma_n |A|$

 \swarrow (Continuation) From the above derive a result about a column of the product of two matrices A and B. Does a similar result hold for the product AB as a whole?

Error Analysis for linear systems: Triangular case

Recall

4-22

ALGORITHM : 1 Back-Substitution algorithm

For
$$i = n : -1 : 1$$
 do:
 $t := b_i$
For $j = i + 1 : n$ do
 $t := t - a_{ij}x_j$
End
 $x_i = t/a_{ii}$
End
End

The computed solution \hat{x} of the triangular system Ux = b computed by the back-substitution algorithm satisfies:

$$(U+E)\hat{x}=b$$

with

$$|E| \le n \underline{\mathrm{u}} |U| + O(\underline{\mathrm{u}}^{2})$$

> Backward error analysis. Computed x solves a slightly perturbed system.

Backward error not large in general. It is said that triangular solve is "backward stable".

Error Analysis for Gaussian Elimination

If no zero pivots are encountered during Gaussian elimination (no pivoting) then the computed factors \hat{L} and \hat{U} satisfy

$$\hat{L}\hat{U}=A+H$$

with

$$|H| \leq 3(n-1) ~ imes ~ \underline{\mathrm{u}} ~ ig(|A|+|\hat{L}|~|\hat{U}|ig)+O(\underline{\mathrm{u}}^{\,2})$$

Solution \hat{x} computed via $\hat{L}\hat{y} = b$ and $\hat{U}\hat{x} = \hat{y}$ is s. t.

$$(A+E)\hat{x}=b$$
 with

$$|E| \leq n \underline{\mathrm{u}} \left(3 |A| + 5 |\hat{L}| |\hat{U}|
ight) + O(\underline{\mathrm{u}}^{\,2})$$

TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 - Float

"Backward" error estimate.

- \succ $|\hat{L}|$ and $|\hat{U}|$ are not known in advance they can be large.
- > What if partial pivoting is used?
- > Permutations introduce no errors. Equivalent to standard LU factorization on matrix PA.
- $ig> |\hat{L}|$ is small since $l_{ij} \leq 1$. Therefore, only $oldsymbol{U}$ is "uncertain"
- In practice partial pivoting is "stable" i.e., it is highly unlikely to have a very large U.
- Read Lecture 22 of Text (especially last 3 subsections) about stability of Gaussian Elimination with partial pivoting.

Supplemental notes: Floating Point Arithmetic

In most computing systems, real numbers are represented in two parts: A mantissa and an exponent. If the representation is in the base β then:

$$x=\pm (.d_1d_2\cdots d_m)_etaeta^e$$

.d₁d₂ · · · d_m is a fraction in the base-β representation
 e is an integer - can be negative, positive or zero.
 Generally the form is normalized in that d₁ ≠ 0.

4-26

Example: In base 10 (for illustration)

1. 1000.12345 can be written as

$0.100012345_{10} \times 10^4$

2. 0.000812345 can be written as

 $0.812345_{10} imes 10^{-3}$

Problem with floating point arithmetic: we have to live with limited precision.

Example: Assume that we have only 5 digits of accuray in the mantissa and 2 digits for the exponent (excluding sign).

Try to add 1000.2 = .10002e+03 and 1.07 = .10700e+01: 1000.2 = .1 0 0 0 2 0 4; 1.07 = .1 0 7 0 0 0 1

First task: align decimal points. The one with smallest exponent will be (internally) rewritten so its exponent matches the largest one: $1.07 = 0.000107 \times 10^4$

Second task: add mantissas:

4 - 28

TB: 13; GvL 2.7; Ort 9.2; AB: 1.4.1–. – FloatSuppl

Third task:

round result. Result has 6 digits - can use only 5 so we can

- Chop result: 1 0 0 1 2 ;
- > Round result: $.1 \ 0 \ 0 \ 1 \ 3$;

Fourth task:

4-29

Normalize result if needed (not needed here)

result with rounding: 1 0 0 1 3 0 4;

A Redo the same thing with 7000.2 + 4000.3 or 6999.2 + 4000.3.

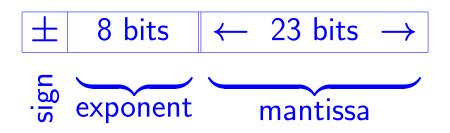
Some More Examples

- > Each operation $fl(x \odot y)$ proceeds in 4 steps:
 - 1. Line up exponents (for addition & subtraction).
 - 2. Compute temporary exact answer.
 - 3. Normalize temporary result.
 - 4. Round to nearest representable number (round-to-even in case of a tie).

	.40015 e+02	.40010 e+02	.41015 e-98			
+	.60010 e+02	.50001 e-04	41010 e-98			
temporary	1.00025 e+02	.4001050001e+02	.00005 e-98			
normalize	.100025e+03	.400105⊕ e+02	.00050 e-99			
round	.10002 e+03	.40011 e+02	.00050 e-99			
note:	round to even	round to nearest \oplus =not all 0's	too small: unnormalized			
	exactly halfway between values	closer to upper value	exponent is at minimum			

The IEEE standard

32 bit (Single precision) :



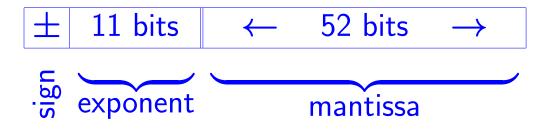
Number is scaled so it is in the form $1.d_1d_2...d_{23} \times 2^e$ - but leading one is not represented.

e is between -126 and 127.

For the exponent e is represented in "biased" form: what is stored is actually c = e + 127 – so the value c of exponent field is between 1 and 254. The values c = 0 and c = 255 are for special cases (0 and ∞)]

TB: 13; GvL 2.7; Ort 9.2; AB: 1.4.1–. – FloatSuppl

4-32



> Bias of 1023 so if e is the actual exponent the content of the exponent field is c = e + 1023

• Largest exponent: 1023; Smallest = -1022.

 \blacktriangleright c=0 and c=2047 (all ones) are again for 0 and ∞

Including the hidden bit, mantissa has total of 53 bits (52 bits represented, one hidden).

▶ In single precision, mantissa has total of 24 bits (23 bits represented, one hidden).

Take the number 1.0 and see what will happen if you add $1/2, 1/4, ..., 2^{-i}$. Do not forget the hidden bit!

Hidden bit				(Not represented)								
Expon.	\downarrow	\leftarrow	_	5	2	bit	S	_	\rightarrow			
е	1	1	0	0	0	0	0	0	0	0	0	0
е	1	0	1	0	0	0	0	0	0	0	0	0
е	1	0	0	1	0	0	0	0	0	0	0	0

е	1	0	0	0	0	0	0	0	0	0	0	1
е	1	0	0	0	0	0	0	0	0	0	0	0

(Note: The 'e' part has 12 bits and includes the sign)

Conclusion

$$fl(1+2^{-52})
eq 1$$
 but: $fl(1+2^{-53}) == 1$!!

TB: 13; GvL 2.7; Ort 9.2; AB: 1.4.1–. – FloatSuppl

Special Values

- Allow for unnormalized numbers, leading to gradual underflow.
- Exponent field = 1111111111 (largest possible value) Number represented is "Inf' "-Inf' or "NaN".