SPECIAL LINEAR SYSTEMS OF EQUATIONS

- Symmetric positive definite matrices.
- ullet The LDL^T decomposition; The Cholesky factorization
- Banded systems

$Positive \hbox{-} Definite\ Matrices$

A real matrix is said to be positive definite if

$$(Au,u)>0$$
 for all $u
eq 0$ $u\in \mathbb{R}^n$

Let A be a real positive definite matrix. Then there is a scalar lpha>0 such that

$$(Au,u) \geq lpha \|u\|_2^2.$$

- Consider now the case of Symmetric Positive Definite (SPD) matrices.
- igwedge Consequence 1: $oldsymbol{A}$ is nonsingular
- \blacktriangleright Consequence 2: the eigenvalues of $m{A}$ are (real) positive

A few properties of SPD matrices

- ightharpoonup Diagonal entries of $oldsymbol{A}$ are positive
- Recall: the k-th principal submatrix A_k is the $k \times k$ submatrix of A with entries $a_{ij}, \ 1 \leq i,j \leq k$ (Matlab: A(1:k,1:k)).
- lacktriangle Each A_k is SPD
- $ilde{m eta}$ Consequence: $Det(A_k)>0$ for $k=1,\cdots,n$.
- lacksquare For any n imes k matrix $oldsymbol{X}$ of rank $oldsymbol{k}$, the matrix $oldsymbol{X}^Toldsymbol{A}oldsymbol{X}$ is SPD.
- ightharpoonup The mapping : $x,y
 ightharpoonup (x,y)_A \equiv (Ax,y)$

defines a proper inner product on \mathbb{R}^n . The associated norm, denoted by $||.||_A$, is called the energy norm, or simply the A-norm:

$$\|x\|_A = (Ax,x)^{1/2} = \sqrt{x^T A x}$$

➤ Related measure in Machine Learning, Vision, Statistics: the Mahalanobis distance between two vectors:

$$d_A(x,y) = \|x-y\|_A = \sqrt{(x-y)^T A (x-y)}$$

Appropriate distance (measured in # standard deviations) if x is a sample generated by a Gaussian distribution with covariance matrix A and center y.

More terminology

- ➤ A matrix is Positive Semi-Definite if:
- $(Au,u)\geq 0$ for all $u\in \mathbb{R}^n$
- Eigenvalues of symmetric positive semi-definite matrices are real nonnegative, i.e., ...
- \blacktriangleright ... A can be singular [If not, A is SPD]
- ightharpoonup A matrix is said to be Negative Definite if -A is positive definite. Similar definition for Negative Semi-Definite
- A matrix that is neither positive semi-definite nor negative semi-definite is indefinite
- $ilde{m{m{m{m{m{m{m{m{m{A}}}}}}}}$ Show that if $A^T=A$ and $(Ax,x)=0\; orall x$ then A=0
- Show: A is indefinite iff $\exists \ x,y:(Ax,x)(Ay,y)<0$

$The \ LDL^T \ and \ Cholesky \ factorizations$

- The LU factorization of an SPD matrix A exists
- lacksquare Let A=LU and D=diag(U) and set $\ m{M}\equiv (m{D}^{-1}m{U})^T$.

Then
$$A=LU=LD(D^{-1}U)=LDM^T$$

- \blacktriangleright Both $oldsymbol{L}$ and $oldsymbol{M}$ are unit lower triangular
- ightharpoonup Consider $L^{-1}AL^{-T}=DM^TL^{-T}$
- Matrix on the right is upper triangular. But it is also symmetric. Therefore $M^TL^{-T}=I$ and so M=L
- The diagonal entries of D are positive [Proof: consider $L^{-1}AL^{-T}=D$]. In the end:

$$A = LDL^T = GG^T$$
 where $G = LD^{1/2}$

Cholesky factorization is a specialization of the LU factorization for the SPD case. Several variants exist.

First algorithm: row-oriented LDLT

Adapted from Gaussian Elimination [Work only on upper triang. part]

```
1. For k = 1 : n - 1 Do:
  For i = k + 1 : n Do:
3.
       piv := a(k,i)/a(k,k)
        a(i,i:n) := a(i,i:n) - piv * a(k,i:n)
     End
5.
6. End
```

This will give the U matrix of the LU factorization. Therefore $oldsymbol{D} = diag(oldsymbol{U}), \ oldsymbol{L}^T = oldsymbol{D}^{-1}oldsymbol{U}.$

Row-Cholesky (outer product form)

Scale the rows as the algorithm proceeds. Line 4 becomes

$$a(i,:) := a(i,:) - \left[a(k,i)/\sqrt{a(k,k)}
ight] * \left[a(k,:)/\sqrt{a(k,k)}
ight]$$

ALGORITHM: 1. Outer product Cholesky

- 1. For k = 1 : n Do:
- 2. $A(k,k:n) = A(k,k:n)/\sqrt{A(k,k)}$;
- 3. For i := k + 1 : n Do :
- 4. A(i, i:n) = A(i, i:n) A(k, i) * A(k, i:n);
- 5. End
- 6. End
- \blacktriangleright Result: Upper triangular matrix $m{U}$ such $m{A} = m{U}^Tm{U}$.

Example:

$$A = egin{pmatrix} 1 & -1 & 2 \ -1 & 5 & 0 \ 2 & 0 & 9 \end{pmatrix}$$

- \triangle Is A symmetric positive definite?
- lacktriangle What is the Cholesky factorization of $oldsymbol{A}$?

Column Cholesky. Let $A = GG^T$ with G = lower triangular. Then equate j-th columns:

$$a(i,j) = \sum_{k=1}^j g(j,k) g^T(k,i)
ightarrow$$

$$egin{align} A(:,j) &= \sum_{k=1}^{j} G(j,k) G(:,k) \ &= G(j,j) G(:,j) + \sum_{k=1}^{j-1} G(j,k) G(:,k)
ightarrow \ G(j,j) G(:,j) &= A(:,j) - \sum_{k=1}^{j-1} G(j,k) G(:,k) \ \end{cases}$$

- ightharpoonup Assume that first j-1 columns of G already known.
- Compute unscaled column-vector:

$$v = A(:,j) - \sum_{k=1}^{j-1} G(j,k) G(:,k)$$

- ightharpoonup Notice that $v(j) \equiv G(j,j)^2$.
- ightharpoonup Compute $\sqrt{v(j)}$ and scale v to get j-th column of G.

ALGORITHM: 2. Column Cholesky

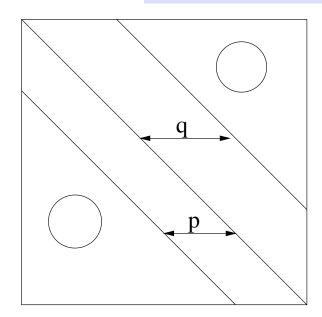
- 1. For j=1:n do 2. For k=1:j-1 do 3. A(j:n,j)=A(j:n,j)-A(j,k)*A(j:n,k)4. EndDo 5. If $A(j,j)\leq 0$ ExitError("Matrix not SPD")
- 6. $A(j,j) = \sqrt{A(j,j)}$
- 7. A(j+1:n,j) = A(j+1:n,j)/A(j,j)
- 8. EndDo

Try algorithm on:

$$A = egin{pmatrix} 1 & -1 & 2 \ -1 & 5 & 0 \ 2 & 0 & 9 \end{pmatrix}$$

Banded matrices

- Banded matrices arise in many applications
- lacksquare A has upper bandwidth q if $|a_{ij}=0|$ for j-i>q
- lacksquare A has lower bandwidth p if $|a_{ij}=0|$ for i-j>p



ightharpoonup Simplest case: tridiagonal ightharpoonup p=q=1.

First observation: Gaussian elimination (no pivoting) preserves the initial banded form. Consider first step of Gaussian elimination:

```
2. For i = 2:n Do:

3. a_{i1} := a_{i1}/a_{11} (pivots)

4. For j := 2:n Do:

5. a_{ij} := a_{ij} - a_{i1} * a_{1j}

6. End

7. End
```

- If A has upper bandwidth q and lower bandwidth p then so is the resulting [L/U] matrix. \blacktriangleright Band form is preserved (induction)
- Operation count?

What happens when partial pivoting is used?

If A has lower bandwidth p, upper bandwidth q, and if Gaussian elimination with partial pivoting is used, then the resulting U has upper bandwidth p+q. L has at most p+1 nonzero elements per column (bandedness is lost).

ightharpoonup Simplest case: tridiagonal ightharpoonup p=q=1.

Example:

$$A = egin{pmatrix} 1 & 1 & 0 & 0 & 0 \ 2 & 1 & 1 & 0 & 0 \ 0 & 2 & 1 & 1 & 0 \ 0 & 0 & 2 & 1 & 1 \ 0 & 0 & 0 & 2 & 1 \end{pmatrix}$$