Positive-Definite Matrices

- A real matrix is said to be positive definite if
 \[(Au, u) > 0 \text{ for all } u \neq 0, u \in \mathbb{R}^n\]

- Let \(A\) be a real positive definite matrix. Then there is a scalar \(\alpha > 0\) such that
 \[(Au, u) \geq \alpha \|u\|_2^2.\]

- Consider now the case of Symmetric Positive Definite (SPD) matrices.

 - Consequence 1: \(A\) is nonsingular
 - Consequence 2: the eigenvalues of \(A\) are (real) positive

A few properties of SPD matrices

- Diagonal entries of \(A\) are positive
- Recall: the \(k\)-th principal submatrix \(A_k\) is the \(k \times k\) submatrix of \(A\) with entries \(a_{ij}, 1 \leq i, j \leq k\) (Matlab: \(A(1 : k, 1 : k)\)).
 - Each \(A_k\) is SPD
 - Consequence: \(\text{Det}(A_k) > 0\) for \(k = 1, \ldots, n\).
 - For any \(n \times k\) matrix \(X\) of rank \(k\), the matrix \(X^TAX\) is SPD.
 - The mapping: \(x, y \rightarrow (x, y)_A \equiv (Ax, y)\)
 defines a proper inner product on \(\mathbb{R}^n\). The associated norm, denoted by \(\|\cdot\|_A\), is called the energy norm, or simply the \(A\)-norm:
 \[\|x\|_A = (Ax, x)^{1/2} = \sqrt{x^T Ax}\]

Related measure in Machine Learning, Vision, Statistics: the Mahalanobis distance between two vectors:

\[d_A(x, y) = \|x - y\|_A = \sqrt{(x - y)^T A(x - y)}\]

Appropriate distance (measured in \# standard deviations) if \(x\) is a sample generated by a Gaussian distribution with covariance matrix \(A\) and center \(y\).
More terminology

- A matrix is Positive Semi-Definite if: \[(Au, u) \geq 0 \text{ for all } u \in \mathbb{R}^n\]
- Eigenvalues of symmetric positive semi-definite matrices are real nonnegative, i.e., ...
- ... A can be singular [If not, A is SPD]
- A matrix is said to be Negative Definite if \(-A\) is positive definite. Similar definition for Negative Semi-Definite
- A matrix that is neither positive semi-definite nor negative semi-definite is indefinite

Show that if \(A^T = A\) and \((Ax, x) = 0\ \forall x\) then \(A = 0\)

Show: A is indefinite iff \(\exists x, y: (Ax, x)(Ay, y) < 0\)

The LDL\(T\) and Cholesky factorizations

- The LU factorization of an SPD matrix \(A\) exists
 - Let \(A = LU\) and \(D = \text{diag}(U)\) and set \(M \equiv (D^{-1}U)^T\).
 - Then \(A = LU = LD(D^{-1}U) = LDM^T\)
 - Both \(L\) and \(M\) are unit lower triangular
 - Consider \(L^{-1}AL^{-T} = DM^T\!

- Matrix on the right is upper triangular. But it is also symmetric. Therefore \(M^TL^{-T} = I\) and \(M = L\)
 - The diagonal entries of \(D\) are positive [Proof: consider \(L^{-1}AL^{-T} = D\)]. In the end:
 \[A = LDL^T = GG^T\ 	ext{where } G = LD^{1/2}\]

Row-Cholesky (outer product form)

Scale the rows as the algorithm proceeds. Line 4 becomes
\[a(i,:) := a(i,:) - [a(k,i)/\sqrt{a(k,k)}] \ast \left[a(k,:) / \sqrt{a(k,k)}\right]\]

ALGORITHM : 1. Outer product Cholesky

1. For \(k = 1 : n\) Do:
2. \(A(k,k:n) = A(k,k:n) / \sqrt{A(k,k)}\)
3. For \(i := k + 1 : n\) Do:
4. \(A(i,i:n) = A(i,i:n) - A(k,i) \ast A(k,i:n);\)
5. End
6. End

- Result: Upper triangular matrix \(U\) such \(A = U^TU\).
Example:

\[
A = \begin{pmatrix}
1 & -1 & 2 \\
-1 & 5 & 0 \\
2 & 0 & 9
\end{pmatrix}
\]

Is \(A\) symmetric positive definite?

What is the \(LDL^T\) factorization of \(A\)?

What is the Cholesky factorization of \(A\)?
Banded matrices arise in many applications. A matrix A has upper bandwidth q if $a_{ij} = 0$ for $j - i > q$. A matrix A has lower bandwidth p if $a_{ij} = 0$ for $i - j > p$.

Simplest case: tridiagonal $p = q = 1$.

First observation: Gaussian elimination (no pivoting) preserves the initial banded form. Consider first step of Gaussian elimination:

1. For $i = 2 : n$ Do:
2. $a_{i1} := a_{i1} / a_{11}$ (pivots)
3. For $j := 2 : n$ Do:
4. $a_{ij} := a_{ij} - a_{i1} * a_{1j}$
5. End
6. End
7. End

If A has upper bandwidth q and lower bandwidth p then so is the resulting $[L/U]$, matrix. Band form is preserved (induction).

Operation count?

What happens when partial pivoting is used? If A has lower bandwidth p, upper bandwidth q, and if Gaussian elimination with partial pivoting is used, then the resulting U has upper bandwidth $p + q$. L has at most $p + 1$ nonzero elements per column (bandedness is lost).

Simplest case: tridiagonal $p = q = 1$.

Example:

$$A = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
2 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 0 \\
0 & 0 & 2 & 1 & 1 \\
0 & 0 & 0 & 2 & 1
\end{pmatrix}$$