Householder QR

Householder reflectors are matrices of the form

$$P = I - 2ww^T$$
,

where w is a unit vector (a vector of 2-norm unity)

Geometrically, Px represents a mirror image of x with respect to the hyperplane $\operatorname{span}\{w\}^{\perp}$.

A few simple properties:

8-2

- For real w: P is symmetric It is also orthogonal $(P^T P = I)$.
- In the complex case $P = I 2ww^H$ is Hermitian and unitary.
- P can be written as $P = I \beta v v^T$ with $\beta = 2/||v||_2^2$, where v is a multiple of w. [storage: v and β]
- Px can be evaluated $x eta(x^Tv) imes v$ (op count?)
- ullet Similarly: $PA = A vz^T$ where $z^T = eta * v^T * A$

> NOTE: we work in \mathbb{R}^m , so all vectors are of length m, P is of size m imes m, etc.

Next: we will solve a problem that will provide the basic ingredient of the Householder QR factorization.

Problem 1: Given a vector $x \neq 0$, find w such that $(I-2ww^T)x=lpha e_1,$ where α is a (free) scalar. Writing $(I - \beta v v^T) x = \alpha e_1$ yields $\beta (v^T x) v = x - \alpha e_1$. \blacktriangleright Desired w is a multiple of $v = x - \alpha e_1$ $x-lpha e_1$, i.e., we can take : $\|\|(I-2ww^T)x\|_2 = \|x\|_2$ \blacktriangleright To determine α recall that \blacktriangleright As a result: $|\alpha| = ||x||_2$, or $\alpha = \pm ||x||_2$ Should verify that both signs work, i.e., that in both cases we indeed get $Px = \alpha e_1$ [exercise]

TB: 10,19; AB: 2.3.3;GvL 5.1 – HouQR

Solution: Equivalent to showing that

$$x - (eta x^T v)v = lpha e_1$$
 i.e., $x - lpha e_1 = (eta x^T v)v$

but recall that $v=x-lpha e_1$ so we need to show that

$$eta x^T v = 1$$
 i.e., that $rac{2}{\|x-lpha e_1\|_2^2}\left(x^T v
ight) = 1$

Denominator = ||x||₂² + \alpha² - 2\alpha e_1^T x = 2(||x||_2² - \alpha e_1^T x)
Numerator = 2x^Tv = 2x^T(x - \alpha e_1) = 2(||x||_2² - \alpha x^T e_1)
Numerator / Denominator = 1.

> Which sign is best? To reduce cancellation, the resulting $x - \alpha e_1$ should not be small. So, $\alpha = -\operatorname{sign}(\xi_1) \|x\|_2$, where $\xi_1 = e_1^T x$

$$v=x+ ext{sign}(oldsymbol{\xi}_1)\|x\|_2e_1$$
 and $eta=2/\|v\|_2^2$,

$$v = egin{pmatrix} \hat{\xi}_1 \ \xi_2 \ dots \ \xi_{m-1} \ \xi_m \end{pmatrix}$$
 with $\hat{\xi}_1 = egin{pmatrix} \xi_1 + \|x\|_2 ext{ if } \xi_1 > 0 \ \xi_1 - \|x\|_2 ext{ if } \xi_1 > 0 \ \xi_1 - \|x\|_2 ext{ if } \xi_1 \leq 0 \end{cases}$

 \succ OK, but will yield a negative multiple of e_1 if $\xi_1 > 0$.

Alternative:

8-6

Define
$$\sigma = \sum_{i=2}^{m} \xi_i^2$$
.
Always set $\hat{\xi}_1 = \xi_1 - ||x||_2$. Update OK when $\xi_1 \leq 0$
When $\xi_1 > 0$ compute \hat{x}_1 as
$$\hat{\xi}_1 = \xi_1 - ||x||_2 = \frac{\xi_1^2 - ||x||_2^2}{\xi_1 + ||x||_2} = \frac{-\sigma}{\xi_1 + ||x||_2}$$
So:
$$\hat{\xi}_1 = \begin{cases} \frac{-\sigma}{\xi_1 + ||x||_2} & \text{if } \xi_1 > 0\\ \xi_1 - ||x||_2 & \text{if } \xi_1 \leq 0 \end{cases}$$

> It is customary to compute a vector v such that $v_1 = 1$. So v is scaled by its first component.

$$\blacktriangleright$$
 If $\sigma == 0$, wll get $v = [1; x(2:m)]$ and $eta = 0$.

Matlab function:

8-7

```
function [v,bet] = house (x)
%% computes the householder vector for x
m = length(x);
v = [1; x(2:m)];
sigma = v(2:m)' * v(2:m);
if (sigma == 0)
   bet = 0;
else
   xnrm = sqrt(x(1)^2 + sigma);
   if (x(1) <= 0)
      v(1) = x(1) - xnrm;
   else
      v(1) = -sigma / (x(1) + xnrm);
   end
   bet = 2 / (1 + sigma/v(1)^2);
   v = v/v(1);
end
```

Problem 2: Generalization.

Given an m imes n matrix X, find w_1, w_2, \dots, w_n such that $(I-2w_nw_n^T)\cdots(I-2w_2w_2^T)(I-2w_1w_1^T)X=R$ where $r_{ij}=0$ for i>j

First step is easy : select w_1 so that the first column of X becomes $lpha e_1$

Second step: select w_2 so that x_2 has zeros below 2nd component.

 \blacktriangleright etc.. After k-1 steps: $X_k \equiv P_{k-1} \dots P_1 X$ has the following shape:

TB: 10,19; AB: 2.3.3;GvL 5.1 – HouQR

To do: transform this matrix into one which is upper triangular up to the k-th column...

> ... while leaving the previous columns untouched.

To leave the first k-1 columns unchanged w must have zeros in positions 1 through k-1.

$$P_k=I-2w_kw_k^T, \hspace{1em} w_k=rac{v}{\|v\|_2},$$

where the vector \boldsymbol{v} can be expressed as a Householder vector for a shorter vector using the matlab function house,

$$v = egin{pmatrix} \mathbf{0} \ house(X(k:m,k)) \end{pmatrix}$$

 \blacktriangleright The result is that work is done on the (k:m,k:n) submatrix.

TB: 10,19; AB: 2.3.3;GvL 5.1 – HouQR

ALGORITHM : 1. Householder QR

1. For
$$k = 1 : n \text{ do}$$

2. $[v, \beta] = house(X(k : m, k))$
3. $X(k : m, k : n) = (I - \beta v v^T)X(k : m, k : n)$
4 If $(k < m)$
5 $X(k + 1 : m, k) = v(2 : m - k + 1)$
6 end
7 end

In the end:

8-11

 $X_n = P_n P_{n-1} \dots P_1 X =$ upper triangular

Yields the factorization:

$$X = QR$$
where:

$$Q = P_1 P_2 \dots P_n \text{ and } R = X_n$$

$$\boxed{Example:}$$
Apply to system of $X = [x_1, x_2, x_3] = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & 4 \end{pmatrix}$

Answer:

$$x_1 = egin{pmatrix} 1 \ 1 \ 1 \ 1 \ 1 \end{pmatrix}$$
, $\|x_1\|_2 = 2$, $v_1 = egin{pmatrix} 1+2 \ 1 \ 1 \ 1 \end{pmatrix}$, $w_1 = rac{1}{2\sqrt{3}} egin{pmatrix} 1+2 \ 1 \ 1 \ 1 \end{pmatrix}$

$$egin{aligned} P_1 &= I - 2w_1 w_1^T = rac{1}{6} egin{pmatrix} -3 & -3 & -3 & -3 \ -3 & 5 & -1 & -1 \ -3 & -1 & 5 & -1 \ -3 & -1 & -1 & 5 \ \end{pmatrix}, \ P_1 X &= egin{pmatrix} -2 & -1 & -2 \ 0 & 1/3 & -1 \ 0 & -2/3 & -2 \ 0 & -2/3 & 3 \ \end{pmatrix} & rac{ ext{Next stage:}}{ ext{matrix}} \ & rac{ ext{Next stage:}}{ ext{matrix}} \ & rac{1/3 & +1 \ -2/3 \ -2/3 \ \end{pmatrix}, \ \| ilde{x}_2\|_2 &= 1, \ v_2 = egin{pmatrix} 0 \ 1/3 & +1 \ -2/3 \ -2/3 \ \end{pmatrix}, \end{aligned}$$

$$egin{aligned} P_2 &= I - rac{2}{v_2^T v_2} v_2 v_2^T = rac{1}{3} egin{pmatrix} 3 & 0 & 0 & 0 \ 0 & -1 & 2 & 2 \ 0 & 2 & 2 & -1 \ 0 & 2 & -1 & 2 \ \end{pmatrix}, \ P_2 P_1 X &= egin{pmatrix} -2 & -1 & -2 \ 0 & -1 & 1 \ 0 & 0 & -3 \ 0 & 0 & 2 \ \end{pmatrix} & ext{Last stage:} \ arprop_3 &= egin{pmatrix} 1 & 0 & 0 & -3 \ 0 & 0 & 2 \ \end{pmatrix} & ext{Last stage:} \ arprop_3 &= egin{pmatrix} 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & -1 & 2 \ 0 & -1 & 1 \ 0 & 0 & -3 \ 0 & 0 & 2 \ \end{pmatrix} & ext{Last stage:} \ arprop_3 &= egin{pmatrix} 1 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 2 \ \end{pmatrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 0 \ \end{matrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ -2 & -1 & 0 \ \end{matrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ \end{matrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ \end{matrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ \end{matrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ \end{matrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ \end{matrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 & 0 \ \end{matrix}, \ arprop_3 &= egin{pmatrix} 0 & 0 & 0 \ \end{matrix}, \ arpr$$

$$egin{aligned} P_2 &= I - rac{2}{v_3^T v_3} v_3 v_3^T = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & -.83205 & .55470 \ 0 & 0 & .55470 & .83205 \end{pmatrix}, \ P_3 P_2 P_1 X &= egin{pmatrix} -2 & -1 & -2 \ 0 & -1 & 1 \ 0 & 0 & \sqrt{13} \ 0 & 0 & 0 \end{pmatrix} = R, \ P_3 P_2 P_1 &= egin{pmatrix} -2 & -1 & -2 \ 0 & -1 & 1 \ 0 & 0 & \sqrt{13} \ 0 & 0 & 0 \end{pmatrix} = R, \ P_3 P_2 P_1 &= egin{pmatrix} -.50000 & -.50000 & -.50000 & -.50000 \ -.50000 & .50000 & .50000 \ .13868 & -.13868 & -.69338 & .69338 \ -.69338 & .69338 & -.13868 & .13868 \end{pmatrix} \end{aligned}$$

 $X = \underline{P_1}P_2\underline{P_3}R$

End Example

MAJOR difference with Gram-Schmidt: Q is $m \times m$ and R is $m \times n$ (same as X). The matrix R has zeros below the n-th row. Note also : this factorization always exists.

Cost of Householder QR? Compare with Gram-Schmidt

8-16

How to obtain $X = Q_1 R_1$ where Q_1 = same size as X and R_1 is $n \times n$ (as in MGS)?

Answer: simply use the partitioning

8-17

$$egin{array}{lll} oldsymbol{X} = egin{pmatrix} oldsymbol{Q}_1 & oldsymbol{Q}_2 \end{pmatrix} egin{pmatrix} oldsymbol{R}_1 \ oldsymbol{0} \end{pmatrix} &
ightarrow oldsymbol{X} = oldsymbol{Q}_1 oldsymbol{R}_1 \ oldsymbol{0} \end{pmatrix} &
ightarrow oldsymbol{X} = oldsymbol{Q}_1 oldsymbol{R}_1 \ oldsymbol{0} \end{pmatrix}$$

Referred to as the "thin" QR factorization (or "economy-size QR" factorization in matlab)

> How to solve a least-squares problem Ax = b using the Householder factorization?

> Answer: no need to compute Q_1 . Just apply Q^T to b.

• This entails applying the successive Householder reflections to \boldsymbol{b}

The rank-deficient case

Result of Householder QR: Q_1 and R_1 such that $Q_1R_1 = X$. In the rank-deficient case, can have $\operatorname{span}\{Q_1\} \neq \operatorname{span}\{X\}$ because R_1 may be singular.

Remedy: Householder QR with column pivoting. Result will be:

$$A\Pi = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & 0 \end{pmatrix}$$

 \triangleright R_{11} is nonsingular. So rank(X) = size of R_{11} = rank (Q_1) and Q_1 and X span the same subspace.

$$\blacktriangleright \ \Pi \text{ permutes columns of } X.$$

8-18

Algorithm: At step k, active matrix is X(k:m,k:n). Swap k-th column with column of largest 2-norm in X(k:m,k:n). If all the columns have zero norm, stop.

TB: 10,19; AB: 2.3.3;GvL 5.1 – HouQR

Practical Question: How to implement this ???

Suppose you know the norms of each column of X at the start. What happens to each of the norms of X(2 : m, j) for $j = 2, \dots, n$? Generalize this to step k and obtain a procedure to inexpensively compute the desired norms at each step.

TB: 10,19; AB: 2.3.3;GvL 5.1 – HouQR

Properties of the QR factorization

Consider the 'thin' factorization A = QR, (size(Q) = [m,n] = size (A)). Assume $r_{ii} > 0$, $i = 1, \ldots, n$

1. When A is of full column rank this factorization exists and is unique

2. It satisfies:

$$ext{span}\{a_1,\cdots,a_k\}= ext{span}\{q_1,\cdots,q_k\}, \hspace{0.2cm} k=1,\ldots,n$$

3. R is identical with the Cholesky factor G^T of $A^T A$.

When A in rank-deficient and Householder with pivoting is used, then

$$Ran\{Q_1\}=Ran\{A\}$$

TB: 10,19; AB: 2.3.3;GvL 5.1 – HouQR

Cost of Householder QR

Look at the algorithm: each step works in rectangle X(k:m,k:n). Step k : twice 2(m-k+1)(n-k+1)

$$\begin{split} T(n) &= \sum_{k=1}^{n} 4(m-k+1)(n-k+1) \\ &= 4\sum_{k=1}^{n} [(m-n)+(n-k+1)](n-k+1) \\ &= 4[(m-n)*\frac{n(n+1)}{2} + \frac{n(n+1)(2n+1)}{6}] \\ &\approx (m-n)*2n^2 + 4n^3/3 \\ &= 2mn^2 - \frac{2}{3}n^3 \end{split}$$

TB: 10,19; AB: 2.3.3;GvL 5.1 – HouQR

Givens Rotations

Matrices of the form

with $c=\cos heta$ and $s=\sin heta$

8-23

> represents a rotation in the span of e_i and e_k .

Main idea of Givens rotations consider y = Gx then

$$egin{aligned} y_i &= c st x_i + s st x_k \ y_k &= -s st x_i + c st x_k \ y_j &= x_j & ext{for} & j
eq i,k \end{aligned}$$

 \blacktriangleright Can make $y_k = 0$ by selecting

$$s=x_k/t; \hspace{1em} c=x_i/t; \hspace{1em} t=\sqrt{x_i^2+x_k^2}$$

This is used to introduce zeros in the first column of a matrix A (for example G(m-1,m), G(m-2,m-1) etc..G(1,2))..

See text for details

8-24