Householder reflectors are matrices of the form

\[P = I - 2ww^T, \]

where \(w \) is a unit vector (a vector of 2-norm unity).

Geometrically, \(Px \) represents a mirror image of \(x \) with respect to the hyperplane \(\text{span}\{w\}^\perp \).
A few simple properties:

- For real w: P is symmetric – it is also orthogonal ($P^T P = I$).
- In the complex case $P = I - 2ww^H$ is Hermitian and unitary.
- P can be written as $P = I - \beta vv^T$ with $\beta = 2/\|v\|^2_2$, where v is a multiple of w. [storage: v and β]
- Px can be evaluated $x - \beta(x^Tv) \times v$ (op count?)
- Similarly: $PA = A - vz^T$ where $z^T = \beta * v^T * A$

NOTE: we work in \mathbb{R}^m, so all vectors are of length m, P is of size $m \times m$, etc.

Next: we will solve a problem that will provide the basic ingredient of the Householder QR factorization.
Problem 1: Given a vector \(x \neq 0 \), find \(w \) such that

\[
(I - 2ww^T)x = \alpha e_1,
\]

where \(\alpha \) is a (free) scalar.

Writing \((I - \beta vv^T)x = \alpha e_1\) yields \(\beta(v^T x) v = x - \alpha e_1\).

- Desired \(w \) is a multiple of \(x - \alpha e_1 \), i.e., we can take:

\[
v = x - \alpha e_1
\]

- To determine \(\alpha \) recall that

\[
\| (I - 2ww^T)x \|_2 = \| x \|_2
\]

- As a result: \(|\alpha| = \| x \|_2 \), or

\[
\alpha = \pm \| x \|_2
\]

- Should verify that both signs work, i.e., that in both cases we indeed get \(Px = \alpha e_1 \) [exercise]
Show that \((I - \beta vv^T)x = \alpha e_1\) when \(v = x - \alpha e_1\) and \(\alpha = \pm \|x\|_2\).

Solution: Equivalent to showing that
\[x - (\beta x^T v)v = \alpha e_1\] i.e., \(x - \alpha e_1 = (\beta x^T v)v\)
but recall that \(v = x - \alpha e_1\) so we need to show that
\[\beta x^T v = 1\] i.e., that
\[
\frac{2}{\|x - \alpha e_1\|_2^2} (x^T v) = 1
\]

- Denominator = \(\|x\|_2^2 + \alpha^2 - 2\alpha e_1^T x = 2(||x||_2^2 - \alpha e_1^T x)\)
- Numerator = \(2x^T v = 2x^T(x - \alpha e_1) = 2(||x||_2^2 - \alpha x^T e_1)\)

Numerator / Denominator = 1. □
Which sign is best? To reduce cancellation, the resulting \(x - \alpha e_1 \) should not be small. So, \(\alpha = -\text{sign}(\xi_1)\|x\|_2 \), where \(\xi_1 = e_1^T x \)

\[
v = x + \text{sign}(\xi_1)\|x\|_2 e_1 \quad \text{and} \quad \beta = 2/\|v\|_2^2
\]

\[
v = \begin{pmatrix} \hat{\xi}_1 \\ \xi_2 \\ \vdots \\ \xi_{m-1} \\ \xi_m \end{pmatrix} \quad \text{with} \quad \hat{\xi}_1 = \begin{cases} \xi_1 + \|x\|_2 & \text{if } \xi_1 > 0 \\ \xi_1 - \|x\|_2 & \text{if } \xi_1 \leq 0 \end{cases}
\]

OK, but will yield a negative multiple of \(e_1 \) if \(\xi_1 > 0 \).
Alternative:

- Define $\sigma = \sum_{i=2}^{m} \xi_i^2$.
- Always set $\hat{\xi}_1 = \xi_1 - \|x\|_2$. Update OK when $\xi_1 \leq 0$.
- When $\xi_1 > 0$ compute \hat{x}_1 as

 $\hat{\xi}_1 = \xi_1 - \|x\|_2 = \frac{\xi_1^2 - \|x\|_2^2}{\xi_1 + \|x\|_2} = \frac{-\sigma}{\xi_1 + \|x\|_2}$

 So: $\hat{\xi}_1 = \begin{cases} \frac{-\sigma}{\xi_1 + \|x\|_2} & \text{if } \xi_1 > 0 \\ \xi_1 - \|x\|_2 & \text{if } \xi_1 \leq 0 \end{cases}$

- It is customary to compute a vector v such that $v_1 = 1$. So v is scaled by its first component.
- If $\sigma == 0$, we get $v = [1; x(2 : m)]$ and $\beta = 0$.
Matlab function:

function [v,bet] = house (x)
% computes the householder vector for x
m = length(x);
v = [1 ; x(2:m)];
sigma = v(2:m)' * v(2:m);
if (sigma == 0)
bet = 0;
else
 xnrm = sqrt(x(1)^2 + sigma) ;
 if (x(1) <= 0)
 v(1) = x(1) - xnrm;
 else
 v(1) = -sigma / (x(1) + xnrm) ;
 end
 bet = 2 / (1+sigma/v(1)^2);
 v = v/v(1) ;
end
Problem 2: Generalization.

Given an $m \times n$ matrix X, find w_1, w_2, \ldots, w_n such that

$$(I - 2w_n w_n^T)(I - 2w_2 w_2^T)(I - 2w_1 w_1^T)X = R$$

where $r_{ij} = 0$ for $i > j$

- First step is easy: select w_1 so that the first column of X becomes αe_1
- Second step: select w_2 so that x_2 has zeros below 2nd component.
- etc.. After $k - 1$ steps: $X_k \equiv P_{k-1} \ldots P_1 X$ has the following shape:
To do: transform this matrix into one which is upper triangular up to the k-th column...

... while leaving the previous columns untouched.
To leave the first $k - 1$ columns unchanged w must have zeros in positions 1 through $k - 1$.

$$P_k = I - 2w_kw_k^T, \quad w_k = \frac{v}{\|v\|_2},$$

where the vector v can be expressed as a Householder vector for a shorter vector using the matlab function house,

$$v = \begin{pmatrix} 0 \\ house(X(k : m, k)) \end{pmatrix}$$

The result is that work is done on the $(k : m, k : n)$ submatrix.
ALGORITHM : 1. Householder QR

1. For $k = 1 : n$ do
2. $[v, \beta] = \text{house}(X(k : m, k)$
3. $X(k : m, k : n) = (I - \beta vv^T)X(k : m, k : n)$
4. If $(k < m)$
5. $X(k + 1 : m, k) = v(2 : m - k + 1)$
6. end
7. end

In the end:

$$X_n = P_nP_{n-1} \ldots P_1X = \text{upper triangular}$$
Yields the factorization:

\[X = QR \]

where:

\[Q = P_1 P_2 \ldots P_n \text{ and } R = X_n \]

Example:

Apply to system of vectors:

\[X = [x_1, x_2, x_3] = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & -1 \\
1 & 0 & 4
\end{bmatrix} \]

Answer:

\[x_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \| x_1 \|_2 = 2, v_1 = \begin{pmatrix} 1 + 2 \\ 1 \\ 1 \end{pmatrix}, w_1 = \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 + 2 \\ 1 \\ 1 \end{pmatrix} \]
\[P_1 = I - 2w_1w_1^T = \frac{1}{6} \begin{pmatrix} -3 & -3 & -3 & -3 \\ -3 & 5 & -1 & -1 \\ -3 & -1 & 5 & -1 \\ -3 & -1 & -1 & 5 \end{pmatrix}, \]

\[P_1X = \begin{pmatrix} -2 & -1 & -2 \\ 0 & 1/3 & -1 \\ 0 & -2/3 & -2 \\ 0 & -2/3 & 3 \end{pmatrix} \]

Next stage:

\[\tilde{x}_2 = \begin{pmatrix} 0 \\ 1/3 \\ -2/3 \\ -2/3 \end{pmatrix}, \|\tilde{x}_2\|_2 = 1, \quad v_2 = \begin{pmatrix} 0 \\ 1/3 + 1 \\ -2/3 \\ -2/3 \end{pmatrix}, \]
\[P_2 = I - \frac{2}{v_2^Tv_2} v_2 v_2^T = \frac{1}{3} \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 2 & 2 \\ 0 & 2 & 2 & -1 \\ 0 & 2 & -1 & 2 \end{pmatrix}, \]

\[P_2 P_1 X = \begin{pmatrix} -2 & -1 & -2 \\ 0 & -1 & 1 \\ 0 & 0 & -3 \\ 0 & 0 & 2 \end{pmatrix} \]

Last stage:

\[\tilde{x}_3 = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 3 \end{pmatrix}, \quad \|\tilde{x}_3\|_2 = \sqrt{13}, \quad v_1 = \begin{pmatrix} 0 \\ 0 \\ -2 & -\sqrt{13} \\ 3 \end{pmatrix}, \]
\[P_2 = I - \frac{2}{v_3^T v_3} v_3 v_3^T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -0.83205 & 0.55470 \\ 0 & 0 & 0.55470 & 0.83205 \end{pmatrix} , \]

\[P_3 P_2 P_1 X = \begin{pmatrix} -2 & -1 & -2 \\ 0 & -1 & 1 \\ 0 & 0 & \sqrt{13} \\ 0 & 0 & 0 \end{pmatrix} = R , \]

\[P_3 P_2 P_1 = \begin{pmatrix} -0.50000 & -0.50000 & -0.50000 & -0.50000 \\ -0.50000 & -0.50000 & 0.50000 & 0.50000 \\ 0.13868 & -0.13868 & -0.69338 & 0.69338 \\ -0.69338 & 0.69338 & -0.13868 & 0.13868 \end{pmatrix} \]
So we end up with the factorization

\[X = P_1 P_2 P_3 R \]

End Example

MAJOR difference with Gram-Schmidt: \(Q \) is \(m \times m \) and \(R \) is \(m \times n \) (same as \(X \)). The matrix \(R \) has zeros below the \(n \)-th row. Note also: this factorization always exists.

Cost of Householder QR? Compare with Gram-Schmidt

Question: How to obtain \(X = Q_1 R_1 \) where \(Q_1 \) = same size as \(X \) and \(R_1 \) is \(n \times n \) (as in MGS)?
Answer: simply use the partitioning

\[X = (Q_1 \ Q_2) \begin{pmatrix} R_1 \\ 0 \end{pmatrix} \rightarrow X = Q_1 R_1 \]

- Referred to as the “thin” QR factorization (or “economy-size QR” factorization in matlab)
- How to solve a least-squares problem \(Ax = b \) using the Householder factorization?
 - Answer: no need to compute \(Q_1 \). Just apply \(Q^T \) to \(b \).
- This entails applying the successive Householder reflections to \(b \)
The rank-deficient case

Result of Householder QR: Q_1 and R_1 such that $Q_1R_1 = X$. In the rank-deficient case, can have $\text{span}\{Q_1\} \neq \text{span}\{X\}$ because R_1 may be singular.

Remedy: Householder QR with column pivoting. Result will be:

$$A\Pi = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & 0 \end{pmatrix}$$

R_{11} is nonsingular. So $\text{rank}(X) =$ size of $R_{11} = \text{rank}(Q_1)$ and Q_1 and X span the same subspace.

Π permutes columns of X.
Algorithm: At step k, active matrix is $X(k : m, k : n)$. Swap k-th column with column of largest 2-norm in $X(k : m, k : n)$. If all the columns have zero norm, stop.
Practical Question: How to implement this ???

Suppose you know the norms of each column of X at the start. What happens to each of the norms of $X(2 : m, j)$ for $j = 2, \cdots, n$? Generalize this to step k and obtain a procedure to inexpensively compute the desired norms at each step.
Properties of the QR factorization

Consider the ‘thin’ factorization $A = QR$, (size(Q) = [m,n] = size (A)). Assume $r_{ii} > 0$, $i = 1, \ldots, n$

1. When A is of full column rank this factorization exists and is unique

2. It satisfies:

$$\text{span}\{a_1, \cdots, a_k\} = \text{span}\{q_1, \cdots, q_k\}, \quad k = 1, \ldots, n$$

3. R is identical with the Cholesky factor G^T of $A^T A$.

When A in rank-deficient and Householder with pivoting is used, then

$$\text{Ran}\{Q_1\} = \text{Ran}\{A\}$$
Look at the algorithm: each step works in rectangle $X(k : m, k : n)$. Step k: twice $2(m - k + 1)(n - k + 1)$

\[
T(n) = \sum_{k=1}^{n} 4(m - k + 1)(n - k + 1)
\]

\[
= 4 \sum_{k=1}^{n} [(m - n) + (n - k + 1)](n - k + 1)
\]

\[
= 4[(m - n) \ast \frac{n(n + 1)}{2} + \frac{n(n + 1)(2n + 1)}{6}]
\]

\[
\approx (m - n) \ast 2n^2 + 4n^3 / 3
\]

\[
= 2mn^2 - \frac{2}{3}n^3
\]
Matrices of the form

\[
G(i, k, \theta) = \begin{pmatrix}
1 & \ldots & 0 & \ldots & 0 & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & \ldots & c & \ldots & s & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \ldots & -s & \ldots & c & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & \ldots & \ldots & \ldots & 1
\end{pmatrix}
\]

with \(c = \cos \theta \) and \(s = \sin \theta \)

represents a rotation in the span of \(e_i \) and \(e_k \).
Main idea of Givens rotations

Consider $y = Gx$ then

$$
y_i = c \cdot x_i + s \cdot x_k
$$

$$
y_k = -s \cdot x_i + c \cdot x_k
$$

$$
y_j = x_j \quad \text{for} \quad j \neq i, k
$$

► Can make $y_k = 0$ by selecting

$$
s = x_k/t; \quad c = x_i/t; \quad t = \sqrt{x_i^2 + x_k^2}
$$

► This is used to introduce zeros in the first column of a matrix A (for example $G(m - 1, m)$, $G(m - 2, m - 1)$ etc. $G(1, 2)$).

► See text for details