

8-4

> Which sign is best? To reduce cancellation, the resulting $x - \alpha e_1$ should not be small. So, $\alpha = -\operatorname{sign}(\xi_1) \|x\|_2$, where $\xi_1 = e_1^T x$

$$v=x+ ext{sign}(\xi_1)\|x\|_2e_1$$
 and $eta=2/\|v\|_2^2$

$$v = egin{pmatrix} \hat{\xi}_1 \ \xi_2 \ dots \ \xi_{m-1} \ \xi_m \end{pmatrix}$$
 with $\hat{\xi}_1 = egin{pmatrix} \xi_1 + \|x\|_2 ext{ if } \xi_1 > 0 \ \xi_1 - \|x\|_2 ext{ if } \xi_1 \leq 0 \end{bmatrix}$

8-5

8-7

> OK, but will yield a negative multiple of e_1 if $\xi_1 > 0$.

Alternative:

- \blacktriangleright Define $\sigma = \sum_{i=2}^{m} \xi_i^2$.
- ig> Always set $\hat{\xi_1} = \xi_1 \|x\|_2$. Update OK when $\xi_1 \leq 0$
- \blacktriangleright When $\xi_1 > 0$ compute \hat{x}_1 as

$$\hat{\xi}_1 = \xi_1 - \|x\|_2 = rac{\xi_1^2 - \|x\|_2^2}{\xi_1 + \|x\|_2} = rac{-\sigma}{\xi_1 + \|x\|_2}$$

So:
$$\hat{\xi}_1 = \begin{cases} rac{-\sigma}{\xi_1 + \|x\|_2} & \text{if } \xi_1 > 0 \\ \xi_1 - \|x\|_2 & \text{if } \xi_1 \le 0 \end{cases}$$

> It is customary to compute a vector v such that $v_1 = 1$. So v is scaled by its first component.

8-6

$$\blacktriangleright$$
 If $\sigma == 0$, wll get $v = [1; x(2:m)]$ and $eta = 0$.

TB: 10,19; AB: 2.3.3;GvL 5.1 - HouQR

Matlab function:

```
function [v,bet] = house (x)
%% computes the householder vector for x
m = length(x);
v = [1; x(2:m)];
sigma = v(2:m)' * v(2:m);
if (sigma == 0)
   bet = 0:
else
   xnrm = sqrt(x(1)^2 + sigma) ;
   if (x(1) <= 0)
      v(1) = x(1) - xnrm;
   else
      v(1) = -sigma / (x(1) + xnrm) ;
   end
   bet = 2 / (1 + sigma / v(1)^2);
   v = v/v(1);
end
```

Problem 2: Generalization.

Given an
$$m imes n$$
 matrix X , find w_1,w_2,\ldots,w_n such that $(I-2w_nw_n^T)\cdots(I-2w_2w_2^T)(I-2w_1w_1^T)X=R$ where $r_{ij}=0$ for $i>j$

 \blacktriangleright First step is easy : select w_1 so that the first column of X becomes $lpha e_1$

> Second step: select w_2 so that x_2 has zeros below 2nd component.

▶ etc.. After k-1 steps: $X_k \equiv P_{k-1} \dots P_1 X$ has the following shape:

8-8

```
TB: 10,19; AB: 2.3.3;GvL 5.1 - HouQR
```

TB: 10,19; AB: 2.3.3;GvL 5.1 - HouQR

$$P_{1} = I - 2w_{1}w_{1}^{T} = \frac{1}{6} \begin{pmatrix} -3 & -3 & -3 & -3 \\ -3 & 5 & -1 & -1 \\ -3 & -1 & 5 & -1 \\ -3 & -1 & -5 & -1 \\ -3 & -1 & -5 & -1 \\ -3 & -1 & -1 & 5 \end{pmatrix},$$

$$P_{1} = I - \frac{2}{w_{1}^{2}w_{2}}v_{2}v_{2}^{T} = \frac{1}{3} \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 2 & 2 \\ 0 & 2 & 2 & -1 \\ 0 & 2 & -1 & 2 \end{pmatrix},$$

$$P_{1} = I - \frac{2}{w_{1}^{2}w_{2}}v_{3}v_{3}^{T} = \begin{pmatrix} 0 \\ 1/3 \\ -2/3 \\ -2/3 \end{pmatrix}, \|\bar{x}_{2}\|_{2} = 1, v_{2} = \begin{pmatrix} 1/3 & -1 \\ -2/3 \\ -2/3 \end{pmatrix},$$

$$\bar{x}_{3} = \begin{pmatrix} 0 \\ -2 \\ -2 \\ -2 \end{pmatrix}, \|\bar{x}_{3}\|_{2} = \sqrt{13}, v_{1} = \begin{pmatrix} 0 \\ 0 \\ -2 & -\sqrt{13} \\ -2 & -\sqrt{13} \end{pmatrix},$$

$$\bar{x}_{4} = \frac{1}{\sqrt{2}}v_{4}v_{4}v_{5}^{T} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -.83205 & .55470 \\ 0 & 0 & .55470 & .83205 \end{pmatrix},$$

$$P_{2} = I - \frac{2}{w_{1}^{2}w}v_{3}v_{3}^{T} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -.83205 & .55470 \\ 0 & 0 & .55470 & .83205 \end{pmatrix},$$

$$P_{3}P_{2}P_{1}X = \begin{pmatrix} -50000 & -.50000 & -.50000 \\ -.50000 & .50000 & .50000 \\ .50000 & .50000 \\ .50000 & .50000 & .50000 \\ .50000 & .50000 \\ .50000 & .50000 & .50000 \\ .50000 & .50000 & .50000 \\ .50000 & .50000 & .50000 \\ .50000 & .50000 \\ .50000 & .50000 \\ .50000 & .50000 \\ .50000 & .50000 \\ .50000 & .50000 \\ .50000 & .50000 \\ .50000 & .50000 \\ .50000 & .50000 \\ .50000 \\ .50000 & .50000 \\ .50000 \\ .50000 & .50000 \\ .50000 \\ .50000 & .50000 \\$$

8-16

8-15

Answer: simply use the partitioning

$$X = ig(oldsymbol{Q}_1 \, oldsymbol{Q}_2 ig) ig(oldsymbol{R}_1 ig) ext{ } o ext{ } X = oldsymbol{Q}_1 oldsymbol{R}_1$$

Referred to as the "thin" QR factorization (or "economy-size QR" factorization in matlab)

- > How to solve a least-squares problem Ax = b using the Householder factorization?
- > Answer: no need to compute Q_1 . Just apply Q^T to b.
- > This entails applying the successive Householder reflections to b

8-17

The rank-deficient case

▶ Result of Householder QR: Q_1 and R_1 such that $Q_1R_1 = X$. In the rank-deficient case, can have $\operatorname{span}\{Q_1\} \neq \operatorname{span}\{X\}$ because R_1 may be singular.

> Remedy: Householder QR with column pivoting. Result will be:

$$A\Pi = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & 0 \end{pmatrix}$$

 \succ R_{11} is nonsingular. So rank(X) = size of R_{11} = rank (Q_1) and Q_1 and X span the same subspace.

8-18

> Π permutes columns of X.

TB: 10,19; AB: 2.3.3;GvL 5.1 - HouQR

Algorithm: At step k, active matrix is X(k:m,k:n). Swap k-th column with column of largest 2-norm in X(k:m,k:n). If all the columns have zero norm, stop.

8-19

Practical Question: How to implement this ???

Suppose you know the norms of each column of X at the start. What happens to each of the norms of X(2 : m, j) for $j = 2, \dots, n$? Generalize this to step k and obtain a procedure to inexpensively compute the desired norms at each step.

8-17

TB: 10,19; AB: 2.3.3;GvL 5.1 - HouQR

TB: 10,19; AB: 2.3.3;GvL 5.1 - HouQR

Properties of the QR factorization

Consider the 'thin' factorization A = QR, (size(Q) = [m,n] = size (A)). Assume $r_{ii} > 0$, $i = 1, \ldots, n$

1. When $oldsymbol{A}$ is of full column rank this factorization exists and is unique

2. It satisfies:

8-21

 $\operatorname{span}\{a_1,\cdots,a_k\}=\operatorname{span}\{q_1,\cdots,q_k\},\ \ k=1,\ldots,n$

3. R is identical with the Cholesky factor G^T of $A^T A$.

▶ When *A* in rank-deficient and Householder with pivoting is used, then

 $Ran\{Q_1\} = Ran\{A\}$

8-21

Givens Rotations

> Matrices of the form

$$G(i,k, heta) = egin{pmatrix} 1 & \ldots & 0 & \ldots & 0 & 0 \ arepsilon & \ddots & arepsilon & arepsilon$$

8-23

with $c = \cos heta$ and $s = \sin heta$

> represents a rotation in the span of e_i and e_k .

Cost of Householder QR

Look at the algorithm: each step works in rectangle X(k:m,k:n). Step k : twice 2(m-k+1)(n-k+1)

8-22

Main idea of Givens rotations consider y = Gx then $y_i = c * x_i + s * x_k$ $y_k = -s * x_i + c * x_k$ $y_j = x_j$ for $j \neq i,k$

 \blacktriangleright Can make $y_k = 0$ by selecting

 $s=x_k/t; \hspace{1em} c=x_i/t; \hspace{1em} t=\sqrt{x_i^2+x_k^2}$

This is used to introduce zeros in the first column of a matrix A (for example G(m-1,m), G(m-2,m-1) etc..G(1,2))...

8-24

See text for details

TB: 10,19; AB: 2.3.3;GvL 5.1 – HouQR