## Orthogonal projectors and the URV decomposition

- Orthogonal subspaces;
- Orthogonal projectors; Orthogonal decomposition;
- The URV decomposition
- Introduction to the Singular Value Decomposition


## Orthogonal projectors and subspaces

Notation: Given a supspace $\mathcal{X}$ of $\mathbb{R}^{m}$ define

$$
\mathcal{X}^{\perp}=\{y \mid y \perp x, \quad \forall x \in \mathcal{X}\}
$$

$>$ Let $\boldsymbol{Q}=\left[\boldsymbol{q}_{1}, \cdots, \boldsymbol{q}_{r}\right]$ an orthonormal basis of $\boldsymbol{\mathcal { X }}$
( How would you obtain such a basis?
$>$ Then define orthogonal projector $\boldsymbol{P}=Q Q^{T}$

## Properties

(a) $P^{2}=P$
(b) $(I-P)^{2}=I-P$
(c) $\operatorname{Ran}(P)=\mathcal{X}$
(d) $\operatorname{Null}(P)=\mathcal{X}^{\perp}$
(e) $\operatorname{Ran}(I-P)=\operatorname{Null}(P)=\mathcal{X}^{\perp}$

Note that (b) means that $\boldsymbol{I}-\boldsymbol{P}$ is also a projector
9-2

Proof. (a), (b) are trivial
(c): Clearly $\operatorname{Ran}(P)=\left\{x \mid x=Q Q^{T} y, y \in \mathbb{R}^{m}\right\} \subseteq \mathcal{X}$. Any $\boldsymbol{x} \in \mathcal{X}$ is of the form $\boldsymbol{x}=\boldsymbol{Q} \boldsymbol{y}, \boldsymbol{y} \in \mathbb{R}^{m}$. Take $\boldsymbol{P} \boldsymbol{x}=$ $Q Q^{T}(Q y)=Q y=x$. Since $x=P x, x \in \operatorname{Ran}(P)$. So $\mathcal{X} \subseteq \operatorname{Ran}(\boldsymbol{P})$. In the end $\mathcal{X}=\boldsymbol{\operatorname { R a n }}(\boldsymbol{P})$.
(d): $x \in \mathcal{X}^{\perp} \leftrightarrow(x, y)=0, \forall y \in \mathcal{X} \leftrightarrow(x, Q z)=$ $0, \forall z \in \mathbb{R}^{r} \leftrightarrow\left(Q^{T} x, z\right)=0, \forall z \in \mathbb{R}^{r} \leftrightarrow Q^{T} x=0 \leftrightarrow$ $Q Q^{T} \boldsymbol{x}=0 \leftrightarrow P \boldsymbol{x}=0$.
(e): Need to show inclusion both ways.

- $\boldsymbol{x} \in \operatorname{Null}(P) \leftrightarrow P x=0 \leftrightarrow(I-P) x=x \rightarrow$
$x \in \operatorname{Ran}(I-P)$
- $x \in \operatorname{Ran}(I-P) \leftrightarrow \exists y \in \mathbb{R}^{m} \mid x=(I-P) y \rightarrow$ $P x=P(I-P) y=0 \rightarrow x \in \operatorname{Null}(P)$

Result: Any $\boldsymbol{x} \in \mathbb{R}^{m}$ can be written in a unique way as

$$
x=x_{1}+x_{2}, \quad x_{1} \in \mathcal{X}, \quad x_{2} \in \mathcal{X}^{\perp}
$$

$>$ Proof: Just set $\boldsymbol{x}_{1}=\boldsymbol{P} \boldsymbol{x}, \quad \boldsymbol{x}_{2}=(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{x}$

Note:

$$
\mathcal{X} \cap \mathcal{X}^{\perp}=\{0\}
$$

Therefore:

$$
\mathbb{R}^{m}=\mathcal{X} \oplus \mathcal{X}^{\perp}
$$

> Called the Orthogonal Decomposition

## Orthogonal decomposition

$>$ In other words $\mathbb{R}^{m}=\boldsymbol{P} \mathbb{R}^{m} \oplus(\boldsymbol{I}-\boldsymbol{P}) \mathbb{R}^{m}$ or:

$$
\begin{aligned}
& \mathbb{R}^{m}=\operatorname{Ran}(P) \oplus \operatorname{Ran}(I-P) \text { or: } \\
& \mathbb{R}^{m}=\operatorname{Ran}(P) \oplus \operatorname{Null}(P) \text { or: } \\
& \mathbb{R}^{m}=\operatorname{Ran}(\boldsymbol{P}) \oplus \operatorname{Ran}(\boldsymbol{P})^{\perp}
\end{aligned}
$$

$>$ Can complete basis $\left\{\boldsymbol{q}_{1}, \cdots, \boldsymbol{q}_{r}\right\}$ into orthonormal basis of $\mathbb{R}^{m}$, $\boldsymbol{q}_{r+1}, \cdots, \boldsymbol{q}_{\boldsymbol{m}}$
$>\left\{q_{r+1}, \cdots, q_{m}\right\}=$ basis of $\mathcal{X}^{\perp} . \rightarrow \quad \operatorname{dim}\left(\mathcal{X}^{\perp}\right)=m-r$.

## Four fundamental supspaces - URV decomposition

Let $A \in \mathbb{R}^{m \times n}$ and consider $\operatorname{Ran}(A)^{\perp}$

$$
\operatorname{Property~1:~} \operatorname{Ran}(A)^{\perp}=\operatorname{Null}\left(A^{T}\right)
$$

Proof: $x \in \operatorname{Ran}(A)^{\perp}$ iff $(A y, x)=0$ for all $y$ iff $\left(y, A^{T} x\right)=0$ for all $\boldsymbol{y}$...

$$
\operatorname{Property} \text { 2: } \operatorname{Ran}\left(A^{T}\right)=N u l l(A)^{\perp}
$$

$>$ Take $\mathcal{X}=\operatorname{Ran}(\boldsymbol{A})$ in orthogonal decomoposition. $>$ Result:

$$
\begin{array}{cl}
\mathbb{R}^{m}=\operatorname{Ran}(A) \oplus \operatorname{Null}\left(A^{T}\right) & \begin{array}{l}
4 \text { fundamental subspaces } \\
\operatorname{Ran}(A)
\end{array} \quad \boldsymbol{N u l l}\left(\boldsymbol{A}^{T}\right) \\
\mathbb{R}^{n}=\operatorname{Ran}\left(\boldsymbol{A}^{T}\right) \oplus \operatorname{Null}(\boldsymbol{A}) & \operatorname{Ran}\left(\boldsymbol{A}^{T}\right) \quad \boldsymbol{N u l l}(\boldsymbol{A})
\end{array}
$$

$>$ Express the above with bases for $\mathbb{R}^{m}$ :

$$
[\underbrace{u_{1}, u_{2}, \cdots, u_{r}}_{\operatorname{Ran}(A)}, \underbrace{u_{r+1}, u_{r+2}, \cdots, u_{m}}_{\operatorname{Null}\left(A^{T}\right)}]
$$

and for $\mathbb{R}^{n}$

$$
[\underbrace{v_{1}, v_{2}, \cdots, v_{r}}_{\operatorname{Ran}\left(A^{T}\right)}, \underbrace{v_{r+1}, v_{r+2}, \cdots, v_{n}}_{\operatorname{Null}(A)}]
$$

$>$ Observe $\boldsymbol{u}_{i}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{v}_{\boldsymbol{j}}=\mathbf{0}$ for $\boldsymbol{i}>\boldsymbol{r}$ or $\boldsymbol{j}>\boldsymbol{r}$. Therefore

$$
U^{T} A V=R=\left(\begin{array}{ll}
C & 0 \\
0 & 0
\end{array}\right)_{m \times n} \quad C \in \mathbb{R}^{r \times r}
$$

$$
A=U R V^{T}
$$

> General class of URV decompositions
$>$ Far from unique.
© Show how you can get a decomposition in which $C$ is lower (or upper) triangular, from the above factorization.
$>$ Can select decomposition so that $\boldsymbol{R}$ is upper triangular $\rightarrow$ URV decomposition.
$>$ Can select decomposition so that $\boldsymbol{R}$ is lower triangular $\rightarrow$ ULV decomposition.
$>\operatorname{SVD}=$ special case of URV where $\boldsymbol{R}=$ diagonal
母 How can you get the ULV decomposition by using only the Householder QR factorization (possibly with pivoting)? [Hint: you must use Householder twice]

