Fall 18: CSci 5421—Advanced Algorithms and Data Structures

Out 9/19 Homework 2 Due 10/3

Please do all problems; we will grade a subset of the assigned problems (same subset for everyone). Please follow all of the instructions given in the handout for Homework 1.

1. (8+7 points)
 (a) Use the bottom-up (i.e., iterative) algorithm Matrix-Chain-Order(p) seen in class to determine the minimum number of multiplications needed to compute the product of a sequence of six matrices, whose dimensions are \(p = (p_0, p_1, \ldots, p_6) = (30, 1, 40, 10, 25, 50, 5) \). You must show your work, i.e., the filled-in lookup table, the optimal parenthesization, and its cost.
 (b) Ex. 15.2-5, p. 378.

2. (12 points) Give a top-down, memoized version of the algorithm LCS-Length(X, Y) to compute, in \(\Theta(mn) \) time, the length of a longest common subsequence of strings \(X \) and \(Y \), where \(m = |X| \) and \(n = |Y| \). (You do not have to retrieve the LCS itself; just compute its length.) Give a careful analysis of the running time.

3. (10 points) Ex. 25.2-4, p. 699. Justify your answer carefully.

4. (12 points) This problem explores an improvement in the \(\Theta(n^3) \) running time of the algorithm Optimal-BST (Sec. 15.5). It can be shown that the optimal root, \(\text{root}_{ij} \), satisfies \(\text{root}_{ij} \leq \text{root}_{i,j-1} \leq \text{root}_{i+1,j} \), \(1 \leq i < j \leq n \). (You may assume and use this result without proof.) Using this result rewrite the algorithm Optimal-BST and prove carefully that it runs in time \(\Theta(n^2) \).

5. (15 points)
 Consider the following multiplication table defined on an alphabet \(\Sigma = \{a, b\} \).

	a	b
 a | b | a |
 b | b | b |

 The rows correspond to the left operand and the columns to the right operand; thus, \(aa = b \), \(ab = a \) etc.

 Design a bottom-up dynamic programming algorithm which takes a string \(X = x_1x_2 \cdots x_n \), where each \(x_i \in \Sigma \), and outputs “true” if there is a parenthesization of \(X \) for which the expression evaluates to \(a \) (under the above multiplication table), and “false” otherwise. (You do not have to compute the parenthesization itself if the output is “true”.) The target time bound is \(\Theta(n^3) \).

 For instance, if \(X = abab \), then your algorithm should return “true” since \((a(b(ab))) = a \). If \(X = baab \), then it should return “false”, since no parenthesization of \(X \) evaluates to \(a \). (You should verify this.)
Your answer should include (i) a brief description of the main ideas, including the dynamic programming recurrence and justification for it, (ii) pseudocode, and (iii) an analysis of the running time.

Note: This is a decision problem (where the answer is “true” or “false”), not an optimization problem. Such problems can also be solved sometimes via dynamic programming.

Hint: Let \(a_{ij} \) (resp. \(b_{ij} \)) be “true” if there is a parenthesization of \(x_i x_{i+1} \ldots x_j \) which evaluates to \(a \) (resp. \(b \)) and “false” otherwise.

6. (15 points) Let \(a_1, \ldots, a_n \) be a sequence of positive integers. A labeled tree for this sequence is a binary tree \(T \) of \(n \) leaves named \(v_1, \ldots, v_n \), from left to right. We label \(v_i \) by \(a_i \), for all \(i, 1 \leq i \leq n \). Let \(D_i \) be the length of the path from \(v_i \) to the root of \(T \). (The length of the path is the number of edges on it.) The cost of \(T \) is given by

\[
\text{cost}(T) = \sum_{i=1}^{n} a_i D_i.
\]

Give an efficient, bottom-up dynamic programming algorithm to compute a labeled tree of minimum cost for \(a_1, \ldots, a_n \) in \(\Theta(n^3) \) time. You must compute the cost of the optimal tree and also show how to compute the optimal tree itself.

Your answer should include (i) a brief discussion of the main ideas, including the dynamic programming and justification for it, (ii) pseudocode, and (iii) an analysis of the running time.

Hint: Let \(c(i, j) \) denote the cost of an optimal tree on \(a_i, \ldots, a_j \).