Planning (Ch. 10)

PLANNING

Somehow, I don't think you thought your cunning plan all the way through.
Consider this problem:

Initial: $Sleepy(me) \land Hungry(me)$

Goal: $\neg Sleepy(me) \land \neg Hungry(me)$

Action($Eat(x)$,
Precondition: $Hungry(x)$,
Effect: $\neg Hungry(x)$)

Action($Coffee(x)$,
Precondition: ,
Effect: $\neg Sleepy(x)$)

Action($Sleep(x)$,
Precondition: $Sleepy(x) \land \neg Hungry(x)$,
Effect: $\neg Sleepy(x) \land Hungry(x)$)
Mutexes: actions

Mutex Action rules:

1. \(x \in \text{Effect}(A1) \land \neg x \in \text{Effect}(A2) \)
2. \(x \in \text{Pre}(A1) \land \neg x \in \text{Effect}(A2) \)
3. \(x \in \text{Pre}(A1) \land \neg x \in \text{Pre}(A2) \)
Mutexes: states

There are 2 rules for states, but unlike action-mutexes they can change across levels

1. Opposite relations are mutexes (x and ¬x)
2. If there are mutexes between all possible actions that “lead” to a pair of states...

Two ways that “leading” can be in mutex:
1. Actions are in mutex
2. Preconditions of action pair are in mutex
Mutexes: states

Another way to compute state mutexes:

(1) Add mutexes between all pairs in state
(2) If any pair of actions can lead to this pair of relationships, un-mutex them

Recap:
If any valid pair of actions = no mutex
All ways of reaching invalid = mutex
1. Opposite relations are mutexes (x and $\neg x$)
2. If there are mutexes between all possible actions that lead to a pair of states
Mutexes: states

1. Opposite relations are mutexes (x and ¬x)
2. If there are mutexes between all possible actions that lead to a pair of states
1. Opposite relations are mutexes (x and \(\neg x \))
2. If there are mutexes between all possible actions that lead to a pair of states

None... but if we remove coffee...
1. Opposite relations are mutexes \((x \text{ and } \neg x)\)

2. If there are mutexes between all possible actions that lead to a pair of states

Sl has mutex with both E and NoOp(\(\neg H\))

This mutex will be gone on the next level (as you can eat again)
 Mutexes: states

1. Opposite relations are mutexes (x and \(\neg x \))
2. If there are mutexes between all possible actions that lead to a pair of states

\[
\begin{align*}
H & \rightarrow H & H & \rightarrow H \\
E & \rightarrow H & E & \rightarrow H \\
S & \rightarrow S & S & \rightarrow S
\end{align*}
\]
Consider...
Initial: $\neg Money \land \neg Smart \land \neg Debt$
Goal: $\neg Money \land Smart \land \neg Debt$

Action(\textit{School},
Precondition: ,
Effect: $Debt \land Smart$)

Action(\textit{Job},
Precondition: ,
Effect: $Money \land \neg Smart$)

Action(\textit{Pay},
Precondition: \textit{Money},
Effect: $\neg Money \land \neg Debt$)
Mutexes: actions

The diagram illustrates the relationships and actions among different entities, represented by Sc, P, J, and M. Arrows indicate the flow or actions between these entities.
Mutexes: actions

Non-trivial mutexes:
(SC, P),
(J, P),
(SC, J),
(P, D&M&M&M M),
(SC, D&D&S),
(J, M&M&S)
Mutexes: actions

Non-trivial mutexes:
(SC, P),
(J, P),
(SC, J),
(P, D&M&M&M, M),
(SC, D&M&S),
(J, M&M&S)
Mutexes: actions

Non-trivial mutexes:
(SC, P),
(J, P),
(SC, J),
(P, D&M&M& M),
(SC, D&M&M& S),
(J, M&M& S)
GraphPlan

GraphPlan can be computed in $O(n(a+l)^2)$, where $n =$ levels before convergence
$a =$ number of actions
$l =$ number of relations/literals/states
(square is due to needing to check all pairs)

The original planning problem is PSPACE, which is known to be harder than NP
Let's consider this problem:

Initial: $\text{Clean} \land \text{Garbage} \land \text{Quiet}$

Goal: $\text{Food} \land \neg\text{Garbage} \land \text{Present}$

Action: $(\text{MakeFood},$
Precondition: $\text{Clean},$
Effects: $\text{Food})$

Action: $(\text{Takeout},$
Precondition: $\text{Garbage},$
Effects: $\neg\text{Garbage} \land \neg\text{Clean})$

Action: $(\text{Wrap},$
Precondition: $\text{Quiet},$
Effects: $\text{Present})$

Action: $(\text{Dolly},$
Precondition: $\text{Garbage},$
Effects: $\neg\text{Garbage} \land \neg\text{Quiet})$
GraphPlan: states

Take out one more level
Mutexes

Possible state pairs:

- F, C
- F, ┐C
- F, C
- C, ┐Q
- F, G
- C, P
- F, ┐G
- ┐C, G
- F, Q
- ┐C, ┐G
- F, ┐Q
- ┐C, Q
- F, P
- ┐C, ┐Q
- C, ┐C
- ┐C, P
- C, G
- ┐C, ┐G
- C, G
- ┐C, ┐G

... (more)
Make one more level here!
Blue mutexes disappear

Mutexes

Pink = new mutex
GraphPlan as heuristic

GraphPlan is optimistic, so if any pair of goal states are in mutex, the goal is impossible.

3 basic ways to use GraphPlan as heuristic:
(1) Maximum level of all goals
(2) Sum of level of all goals (not admissible)
(3) Level where no pair of goals is in mutex

(1) and (2) do not require any mutexes, but are less accurate (quick 'n' dirty)
For heuristics (1) and (2), we relax as such:
1. Multiple actions per step, so can only take fewer steps to reach same result
2. Never remove any states, so the number of possible states only increases

This is a valid simplification of the problem, but it is often too simplistic directly
GraphPlan as heuristic

Heuristic (1) directly uses this relaxation and finds the first time when all 3 goals appear at a state level

(2) tries to sum the levels of each individual first appearance, which is not admissible (but works well if they are independent parts)

Our problem: goal={Food, ¬Garbage, Present}
First appearance: F=1, ¬G=1, P=1
GraphPlan: states

Level 0:
C ───> M ───> C

G ───> T ───> G

Q ───> D ───> Q

Level 1:
Heuristic (1): Max(1,1,1) = 1

Heuristic (2): 1+1+1=3
GraphPlan as heuristic

Often the problem is too trivial with just those two simplifications

So we add in mutexes to keep track of invalid pairs of states/actions

This is still a simplification, as only impossible state/action pairs in the original problem are in mutex in the relaxation
GraphPlan as heuristic

Heuristic (3) looks to find the first time none of the goal pairs are in mutex

For our problem, the goal states are: (Food, \neg Garbage, Present)

So all pairs that need to have no mutex: (F, \neg G), (F, P), (\neg G, P)
None of the pairs are in mutex at level 1

This is our heuristic estimate
Finding a solution

GraphPlan can also be used to find a solution:
(1) Converting to a Constraint Sat. Problem
(2) Backwards search

Both of these ways can be run once GraphPlan has all goal pairs not in mutex (or converges)

Additionally, you might need to extend it out a few more levels further to find a solution (as GraphPlan underestimates)
GraphPlan as CSP

Variables = states, Domains = actions to there
Constraints = mutexes & preconditions

Variables: \(G_1, \ldots, G_4, P_1 \ldots P_6 \)

Domains:
- \(G_1 : \{ A_1 \} \)
- \(G_2 : \{ A_2 \} \)
- \(G_3 : \{ A_3 \} \)
- \(G_4 : \{ A_4 \} \)
- \(P_1 : \{ A_5 \} \)
- \(P_2 : \{ A_6, A_{11} \} \)
- \(P_3 : \{ A_7 \} \)
- \(P_4 : \{ A_8, A_9 \} \)
- \(P_5 : \{ A_{10} \} \)
- \(P_6 : \{ A_{10} \} \)

Constraints (normal):
- \(P_1 = A_5 \Rightarrow P_4 \neq A_9 \)
- \(P_2 = A_6 \Rightarrow P_4 \neq A_8 \)
- \(P_2 = A_{11} \Rightarrow P_3 \neq A_7 \)

Constraints (Activity):
- \(G_1 = A_1 \Rightarrow \text{Active}\{P_1, P_2, P_3\} \)
- \(G_2 = A_2 \Rightarrow \text{Active}\{P_4\} \)
- \(G_3 = A_3 \Rightarrow \text{Active}\{P_5\} \)
- \(G_4 = A_4 \Rightarrow \text{Active}\{P_1, P_6\} \)

Init State: \(\text{Active}\{G_1, G_2, G_3, G_4\} \)

(a) Planning Graph

(b) DCSP

from Do & Kambhampati
Finding a solution

For backward search, attempt to find arrows back to the initial state (without conflict/mutex).

Start by finding actions that satisfy all goal conditions, then recursively try to satisfy all of the selected actions’ preconditions.

If this fails to find a solution, mark this level and all the goals not satisfied as: (level, goals) stops changing, no solution.
Graph Plan

Remember this...
Initial: \(\neg Money \land \neg Smart \land \neg Debt \)
Goal: \(\neg Money \land Smart \land \neg Debt \)

\[\text{Action}(\text{School}, \text{Precondition: }, \text{Effect: Debt} \land Smart) \]

\[\text{Action}(\text{Job}, \text{Precondition: }, \text{Effect: Money} \land \neg Smart) \]

\[\text{Action}(\text{Pay}, \text{Precondition: Money}, \text{Effect: } \neg Money \land \neg Debt) \]
Ask: \(\downarrow D^S\downarrow M\)

Find first

no mutex...
Ask:
\[\neg D \land \neg S \land \neg M \]
... then back search

Error! States of 1&4 in mutex

1.

2.

3.
Ask: try different back path...

Graph Plan

1. D
2. M
3 & 4 in mutex

Error, actions
Ask: \[D \land S \land M \]

found

solution!
Finding a solution

Formally, the algorithm is:

\[
\text{graph} = \text{initial} \\
\text{noGoods} = \text{empty table (hash)} \\
\text{for level} = 0 \text{ to infinity} \\
\quad \text{if all goal pairs not in mutex} \\
\quad \quad \text{solution} = \text{recursive search with noGoods} \\
\quad \quad \text{if success, return paths} \\
\quad \text{if graph \& noGoods converged, return fail} \\
\text{graph} = \text{expand graph}
\]
Initial: $Clean \land Garbage \land Quiet$

Goal: $Food \land \neg Garbage \land Present$

You try it!