Scheduling

Chapter 7 OSPP
Part I
Main Points

• Scheduling policy: what to do next, when there are multiple threads ready to run
 – Or multiple packets to send, or web requests to serve, or ...
• Definitions
 – response time, throughput, predictability
• Uniprocessor policies
 – FIFO, round robin, optimal
 – multilevel feedback as approximation of optimal
• Multiprocessor policies
 – Affinity scheduling, gang scheduling
• Queueing theory
 – Can you predict/improve a system’s response time?
Example

• You manage a web site, that suddenly becomes wildly popular. Do you?
 – Buy more hardware?
 – Implement a different scheduling policy?
 – Turn away some users? Which ones?
• How much worse will performance get if the web site becomes even more popular?
Definitions

• Task/Job
 – User request: e.g., mouse click, web request, shell command, ...

• Latency/response time
 – How long does a task take to complete?

• Throughput
 – How many tasks can be done per unit of time?

• Overhead
 – How much extra work is done by the scheduler?

• Fairness
 – How equal is the performance received by different users?

• Predictability
 – How consistent is the performance over time?
More Definitions

• **Workload**
 – Set of tasks for system to perform

• **Preemptive scheduler**
 – If we can take resources away from a running task

• **Work-conserving**
 – Resource is used whenever there is a task to run
 – For non-preemptive schedulers, work-conserving is not always better

• **Scheduling algorithm**
 – takes a workload as input
 – decides which tasks to do first
 – Performance metric (throughput, latency) as output
 – Only preemptive, work-conserving schedulers to be considered
First In First Out (FIFO)

• Schedule tasks in the order they arrive
 – Continue running them until they complete or give up the processor

• On what workloads is FIFO particularly bad?
Shortest Job First (SJF)

- Always do the task that has the shortest remaining amount of work to do
 - Often called Shortest Remaining Time First (SRTF)

- Suppose we have five tasks arrive one right after each other, but the first one is much longer than the others
 - Which completes first in FIFO? Next?
 - Which completes first in SJF? Next?
Question

• Claim: SJF is optimal for average response time

• Does SJF have any downsides?
Can we do SJF in practice?

• May be hard at OS level since tasks are black boxes but concept can be widely applied

• Think about Web requests
 – You can queue web requests
 – Prioritize small ones v. large ones
 – Examples?
Question

• Is FIFO ever optimal?
 – Yes, when all requests are of equal length

• Why is it good?
Starvation and Sample Bias

• Suppose you want to compare two scheduling algorithms
 – Create some infinite sequence of arriving tasks
 – Start measuring
 – Stop at some point
 – Compute average response time as the average for completed tasks between start and stop

• Problem is at time t: one algorithm has completed fewer tasks
Round Robin

• Each task gets resource for a fixed period of time (time quantum)
 – If task doesn’t complete, it goes back in line

• Need to pick a time quantum
 – What if time quantum is too long?
 • Infinite?
 – What if time quantum is too short?
 • One instruction?
Round Robin vs. FIFO

• Assuming zero-cost time slice, is Round Robin always better than FIFO?
 – Same size jobs time-slicing may serve little purpose except “initial” response

• Round robin for video streaming
 – Even for equal size streams this maintains stable progress for all
Round Robin vs. FIFO

Round Robin (1 ms time slice)

FIFO and SJF

Time
Round Robin = Fairness?

• Is Round Robin always fair?
 – Sort of but short jobs finish first!

• What is fair?
 – FIFO?
 – Equal share of the CPU?
 – What if some tasks don’t need their full share?
 – Minimize worst case divergence?
 • Time task would take if no one else was running
 • Time task takes under scheduling algorithm
Mixed Workload
Max-Min Fairness

• How do we balance a mixture of repeating tasks:
 – Some I/O bound, need only a little CPU
 – Some compute bound, can use as much CPU as they are assigned

• One approach: maximize the minimum allocation given to a task
 – If any task needs less than an equal share, schedule the smallest of these first
 – Split the remaining time using max-min
 – If all remaining tasks need at least equal share, split evenly
Multi-level Feedback Queue (MFQ)

• Goals:
 – Responsiveness
 – Low overhead
 – Starvation freedom
 – Some tasks are high/low priority
 – Fairness (among equal priority tasks)

• Not perfect at any of them!
 – Used in Linux
MFQ

• Set of Round Robin queues
 – Each queue has a separate priority

• High priority queues have short time slices
 – Low priority queues have long time slices

• Scheduler picks first thread in highest priority queue

• Tasks start in highest priority queue
 – If time slice expires, task drops one level
MFQ

<table>
<thead>
<tr>
<th>Priority</th>
<th>Time Slice (ms)</th>
<th>Round Robin Queues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>
Uniprocessor Summary (1)

• FIFO is simple and minimizes overhead.
• If tasks are variable in size, then FIFO can have very poor average response time.
• If tasks are equal in size, FIFO is optimal in terms of average response time.
• Considering only the processor, SJF is optimal in terms of average response time.
• SJF is poor in terms of variance in response time.
Uniprocessor Summary (2)

• If tasks are variable in size, Round Robin approximates SJF.
• If tasks are equal in size, Round Robin will have very poor average response time.
• Tasks that intermix processor and I/O benefit from SJF and can do poorly under Round Robin.
Uniprocessor Summary (3)

• Max-Min fairness can improve response time for I/O-bound tasks.
• Round Robin and Max-Min fairness both avoid starvation.
• By manipulating the assignment of tasks to priority queues, an MFQ scheduler can achieve a balance between responsiveness, low overhead, and fairness.
Scheduling

Chapter 7 OSPP
Part II
Multiprocessor Scheduling

• What would happen if we used MFQ on a multiprocessor?
 – Contention for scheduler spinlock
 – Cache slowdown due to ready list data structure pinging from one CPU to another
 – Limited cache reuse: thread’s data from last time it ran is often still in its old cache
Per-Processor Affinity Scheduling

• Each processor has its own ready list
 – Protected by a per-processor spinlock
• Put threads back on the ready list where it had most recently run
 – Ex: when I/O completes, or on Condition->signal
• Idle processors can steal work from other processors
Per-Processor Multi-level Feedback with Affinity Scheduling

<table>
<thead>
<tr>
<th>Processor 1</th>
<th>Processor 2</th>
<th>Processor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scheduling Parallel Programs

• What happens if one thread gets time-sliced while other threads from the same program are still running?
 – Assuming program uses locks and condition variables, it will still be correct
 – What about performance?
Bulk Synchronous Parallelism

• Loop at each processor:
 – Compute on local data (in parallel)
 – Barrier
 – Send (selected) data to other processors (in parallel)
 – Barrier

• Examples:
 – MapReduce
 – Fluid flow over a wing
 – Most parallel algorithms can be recast in BSP
Tail Latency
Scheduling Parallel Programs

Oblivious: each processor time-slices its ready list independently of the other processors

px.y = Thread y in process x
Gang Scheduling

px.y = Thread y in process x
Parallel Program Speedup

- Perfectly Parallel
- Diminishing Returns
- Limited Parallelism

Performance (Inverse Response Time) vs. Number of Processors
Space Sharing

![Diagram showing processor utilization over time for two processes](image-url)
Queueing Theory

• Can we predict what will happen to user performance:
 – If a service becomes more popular?
 – If we buy more hardware?
 – If we change the implementation to provide more features?
Queueing Model

Assumption: average performance in a stable system, where the arrival rate (λ) matches the departure rate (μ)
Definitions

• Queueing delay (W): wait time
 – Number of tasks queued (Q)
• Service time (S): time to service the request
• Response time (R) = queueing delay + service time
• Utilization (U): fraction of time the server is busy
 – Service time * arrival rate (λ)
• Throughput (X): rate of task completions
 – If no overload, throughput = arrival rate
Little’s Law

\[N = X \times R \]

N: number of tasks in the system

Applies to any stable system – where arrivals match departures.
Question

Suppose a system has throughput \((X) = 100 \text{ tasks/s} \), average response time \((R) = 50 \text{ ms/task} \)

- How many tasks are in the system on average?
- If the server takes 5 ms/task, what is its utilization?
- What is the average wait time?
- What is the average number of queued tasks?
Queueing

• What is the best case scenario for minimizing queueing delay?
Queueing: Best Case

Response Time

\[S \]

\[\lambda < \mu \]
no queuing
\[R = S \]

\[\lambda > \mu \]
growing queues
\[R \text{ undefined} \]

Arrival Rate (\(\lambda \))

Throughput (\(\chi \))

\[\mu \]

Max Throughput

Arrival Rate (\(\lambda \))
Response Time: Best vs. Worst Case

- \(\lambda < \mu \) queuing depends on burstiness
- \(\lambda > \mu \) growing queues
- R undefined
- Evenly spaced arrivals
- Bursty arrivals

Graph showing response time vs. arrival rate, with \(S \), \(\lambda \), and \(\mu \) axes.
Queueing: Average Case?

• What is average?
 – Gaussian: Arrivals are spread out, around a mean value
 – Exponential: arrivals are memoryless
 – Heavy-tailed: arrivals are bursty

• Can have randomness in both arrivals and service times
Exponential Distribution

Exponential Distribution

\[f(x) = \lambda e^{-\lambda x} \]
Exponential Distribution

Permits closed form solution to state probabilities, as function of arrival rate and service rate
Response Time vs. Utilization

\[R = \frac{S}{1-U} \]
Question

- Exponential arrivals: $R = S/(1-U)$

- If system is 20% utilized, and load increases by 5%, how much does response time increase?

- If system is 90% utilized, and load increases by 5%, how much does response time increase?
What if Multiple Resources?

• Response time =

 Sum over all i

 Service time for resource i /

 (1 – Utilization of resource i)

• Implication

 – If you fix one bottleneck, the next highest utilized resource will limit performance
Overload Management

• What if arrivals occur faster than service can handle them
 – If do nothing, response time will become infinite

• Turn users away?
 – Which ones? Average response time is best if turn away users that have the highest service demand
 – Example: Highway congestion

• Degrade service?
 – Compute result with fewer resources
 – Example: CNN static front page on 9/11
Highway Congestion (measured)
Data Center Case Study

• P. 361 to be added
Scheduling

Chapter 7 OSPP
Part III: Lottery Scheduling
Overview

• Scheduling Issues
• Lottery Scheduling
• Implementation
• Experiments
• Conclusions
Scheduling Issues

• Context
 – multiple scarce resources: CPU, I/O bw, mem
 – concurrently executing clients
 – service requests of varying importance and characteristics

• Quality of Service

• Modularity
Conventional Scheduling

• Priority Scheduling
 – absolute control (but crude)
 – decay-usage scheduling
 • fair, but hard to analyze, gives avg performance
 – Does p=1 vs. p=2 mean p=1 always gets the CPU or 2/3?

• Problems
 – often ad hoc
 – unable to control service rates
 – no modular abstraction
Solution: Lottery Scheduling

• Easily Understood Behavior
 – proportional share

• Resource Rights Vary Smoothly
 – resource consumption rate proportional to share allocated

• Flexible Control Over Service Rates
 – current schedulers are rigid

• Modular Abstraction
 – multiple resource management policies
Lottery Scheduling Basics

• Randomized Mechanism

• Lottery Tickets
 – encapsulate resource rights
 – issued in different amounts
 – first-class objects

• Lotteries
 – randomly select winning ticket
 – grant resource to client holding winning ticket
Example Lottery

total = 20
random [1 .. 20] = 15

winner
Lottery Scheduling Advantages

• Probabilistic Guarantees
 – n lotteries, client holds t tickets, T total tickets
 – $p = \frac{t}{T}$ (binomial distribution)
 – throughput proportional to ticket allocation
 • $E[w] = np$
 – response time inversely proportional to ticket allocation
 • $E[n] = \frac{1}{p}$
Lottery Scheduling Advantages

• Proportional-Share Fairness
 – direct control over service rates
 – easily understood behavior

• Supports Dynamic Environments
 – immediately adapts to changes
 – fair chance to win each allocation

• No starvation
 – hold a non-zero # of tickets
Managing Diverse Resources

• Processor Time
• Lock Access
• I/O Bandwidth
 – disk bandwidth
 – network bandwidth
• Space-Shared Resources
 – memory
Flexible Resource Management

• Ticket Transfers
 – explicit transfer between clients
 – useful when client blocks while waiting

• Ticket inflation/deflation
 – client creates/removes tickets
 – violates modularity and load insulation
 – convenient among mutually trusting clients: no communication is needed
Ticket Currencies

• Tickets Denominated in Currencies
• Modular Resource Management
 – locally contain effects of inflation
 – isolates loads across logical trust boundaries
• Powerful Abstraction
 – name, share, and protect resource rights
 – flexibly group or isolate users and tasks
Currency Implementation

- **Computing Values**
 - currency: sum value of backing tickets
 - ticket: compute share of currency value

- **Example**
 - task1 funding in base units?
 - \(\frac{100}{300} \times 1000 \)
 - 333 base units
Kernel Implementation

- **Objects**: Ticket, Currency
- **Operations**
 - create/destroy ticket, currency
 - fund/unfund currency
 - compute value of ticket, currency
- **Algorithms**
 - straightforward list-based lottery, $O(\lg \# \text{ clients})$
 - simple currency conversion scheme
Prototype

• Platform
 – Mach 3.0 microkernel
 – 25 MHz DECStations
 – 100 msec quantum

• System Overhead
 – overhead comparable to standard scheduler
 – unoptimized prototype
Experiments

• Proportional-Share Service Rates
• Dynamic Ticket Inflation
• Client-Server Ticket Transfers
• Currency Load Insulation
• Lock Waiting Times
Relative Rates

- Dhrystone benchmark
- two tasks
- three 60-second runs for each ratio
Fairness Over Time

- Dhrystone benchmark
- two tasks
- 2:1 allocation
- 8-second averages
Monte-Carlo Rates

- many trials for accurate results
- three tasks
- ticket inflation
- funding based on relative error
Query Processing Rates

- multithreaded "database" server
- three clients
- 8:3:1 allocation
- ticket transfers
Currencies Insulate Loads

- Currencies A, B
 - 2:1 funding

- Task A
 - Funding 100.A

- Task B1
 - Funding 100.B

- Task B2 joins with funding 50.B
Lottery-Scheduled Locks

• Waiting to Acquire
 – waiters transfer funding to lock owner
 – lock owner inheritis aggreagte funding to acquire CPU

• Release
 – return funding to waiters
 – hold lottery among waiters
 – new winner inherits funding

• Avoids Priority Inversion
Lock Experiment

• Groups of threads A, B with 2:1 Allocation
• Acquire, Hold 50 ms, Release, Compute 50 ms
• Average Waiting Time
 – A waits 450 ms, B waits 948 ms
 – 1:2.11 response time ratio
• Lock Acquisitions
 – A completes 763, B completes 423
 – 1.80 : 1 throughput
Conclusions

• Novel Randomized Scheduling Mechanisms
• Easily Understood Behavior
• Precise Control Over Service Rates
• Modular Resource Management
• Generalizes to Diverse Resources
Next

- Address Translation
- OSPP Chapter 8