What is computer security?

- Keep “bad things” from happening
- Distinguished by presence of an adversary

Two sides of security

- Defenders / white-hats / good guys
- Attackers / black-hats / bad guys
- Each side’s strategy depends on the other
- In some ways like a game

Classic security goals

- Confidentiality
- Integrity
- Authenticity
- Availability

Managing risk

- Threat model, likely adversary goals
- Expected damage
- Expected attack rate
Course areas

- Software security
- OS security
- Cryptography
- Network application security
- Other topics

Software security

- Security bugs aka **vulnerabilities**
 - Some specific to low-level languages like C, others not
- Arms race
 - Attack techniques
 - Defenses against unknown bugs
 - Countermeasures against defenses
- Defensive programming and design

OS security

- Classic area for secure design and security policies
 - Some specific examples from Unix/Linux
- Access control and capabilities
- Multi-level security and information flow
- Assurance and trust

Cryptography

- Mathematical techniques for protecting information
- Symmetric-key techniques (e.g. AES)
- Public-key techniques (e.g. RSA)
- Cryptographic protocols
- What can go wrong (lots!)

Security and the network

- Network protocols, basic and “S”
- Firewalls, NATs, intrusion detectors
- Web servers and web clients
- Network malware and network DoS

Short topics

- Privacy-enhancing network overlays
- Security and usability
- Electronic voting
- Electronic cash (e.g., Bitcoin)
Learning goals

- Think like your adversary
- Recognize and eliminate vulnerabilities
- Design and build systems securely
- Apply security principles to research problems

Outline

- Big-Picture Introduction
- Course Logistics

Instructor information

- Stephen McCamant
- Office: 4-225E Keller
- Office hours: Monday 10-11am, Tuesday 2-3pm, or by appointment
- Email: mccamant@cs.umn.edu

Teaching assistant

- Travis Carlson
- Office hours Wednesday 3-4, Thursday 11-12, in Keller 2-246

Prerequisites

- Undergraduate-level OS, e.g. 4061
- Machine code and compilation
 - E.g. 2021, transitive for 4061
- Useful: networks (4211)
- Graduate level maturity and resourcefulness
- C, Unix, (Perl | Python | Ruby | ···)

Reading materials

- Posted on the course web site
- Download, perhaps with library proxy
- Read before corresponding lecture
- Readings and lecture may not match
 - Both may appear on exams
Textbook

![Security Engineering](image)

Evaluation components

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Component Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>Written exercise sets (5)</td>
</tr>
<tr>
<td>15%</td>
<td>Hands-on assignments (2)</td>
</tr>
<tr>
<td>20%</td>
<td>Midterm exam</td>
</tr>
<tr>
<td>25%</td>
<td>Final exam</td>
</tr>
<tr>
<td>30%</td>
<td>Group research project</td>
</tr>
</tbody>
</table>

Exercises

- Five sets, roughly by topic areas
- Do individually or in groups of up to 3
- Mostly thinking and writing, not much programming
- Submit one set per group in PDF, via Canvas

Hands-on assignments

- Two assignments, by large topic divisions
- Do individually or in groups of up to 3
- Mostly programming and attacking
- Draws heavily on your C and Unix skills
- First up: penetrate-and-patch HA1

Exams

- Open book, open notes, no laptops/calculators/phones
- Mix of multiple-choice/true-false and short-answer
- Midterm: Monday October 21st in class
- Final: Saturday December 14th 10:30am-12:30pm
- Mark your calendars!

Group research project

- Single most important and time-consuming part of course
- Groups of 4-5, preferably 5 or 6
- Engage with a recent research paper
 - Reproduce and extend, or
 - Reproduce and attack
Project milestones

- Pre-proposal (due Sep. 18)
- Progress meetings and reports (monthly)
- Short in-class presentation (last two weeks)
- Paper-style final report (due Dec. 11)

Pre-proposal (Sep. 18)

- Who: group members
- What: paper you're engaging with
- Why: are you suited for this project
- How: preliminary action plan
- When: available times for progress meetings

Project evaluation

- 15% Originality
- 15% Scholarship
- 30% Strength of evaluation
- 40% Individual contribution

Late assignments

- Due dates usually 11:59pm Central Time
- 1 sec late - 23:59:59 late: 75%
- 24 hrs - 47:59:59 late: 50%
- 48 hrs - 71:59:59 late: 25%
- After that: 0

Collaboration, within groups

- Main kind of collaboration expected in class
- Think about how you structure your collaboration
- For best results, but also to learn from teammates

Collaboration, between groups

- Be careful: “no spoilers”
- OK to discuss general concepts
- OK to help with side tech issues
- Sharing code or written answers is never OK
External sources
Many assignments will allow or recommend outside (library, Internet) sources
But you must appropriately acknowledge any outside sources you use
Failure to do so is plagiarism

Security ethics
Don’t use techniques discussed in class to attack the security of other people’s computers!
If we find you do, you will fail, along with other applicable penalties

Academic misconduct generally
Don’t cheat, plagiarize, help others cheat, etc.
Minimum penalty: 0 on assignment, report to OCS
More serious: F in course, other OCS penalties

Course web site
Department web site under csci5271
Also linked from my home page ~mccamant

Canvas
Assignment submissions
Discussion forums
 Including: group formation

Challenging course aspects
Stressing C, low-level, and Unix skills
Thinking like an attacker
Thinking like a researcher
Time management
Hands-on Assignment 1

- Weekly attacks 9/20-10/18
- Attack a badly coded mail server (BCMTA 2.0)
- Test your attacks using Linux virtual machines

Exploiting BCMTA

- BCMTA runs as super-user ("root")
- Bugs allow a regular user to gain root privileges (shell)
- Challenge: many steps from bug to working exploit
- Challenge: bugs fixed over time

Detailed material starts next week

- Readings, projects, exercise 1
- See you on Monday!