Basic idea: detect attacks

- The worst attacks are the ones you don’t even know about
- Best case: stop before damage occurs
 - Marketed as “prevention”
- Still good: prompt response
- Challenge: what is an attack?

Network and host-based IDSes

- Network IDS: watch packets similar to firewall
 - But don’t know what’s bad until you see it
 - More often implemented offline
- Host-based IDS: look for compromised process or user from within machine

Signature matching

- Signature is a pattern that matches known bad behavior
- Typically human-curated to ensure specificity
- See also: anti-virus scanners

Anomaly detection

- Learn pattern of normal behavior
- "Not normal" is a sign of a potential attack
- Has possibility of finding novel attacks
- Performance depends on normal behavior too

Recall: FPs and FNs

- False positive: detector goes off without real attack
- False negative: attack happens without detection
- Any detector design is a tradeoff between these (ROC curve)

Signature and anomaly weaknesses

- Signature
 - Won’t exist for novel attacks
 - Often easy to attack around
- Anomaly detection
 - Hard to avoid false positives
 - Adversary can train over time
Base rate problems

- If the true incidence is small (low base rate), most positives will be false
 - Example: screening test for rare disease
- Easy for false positives to overwhelm admins
- E.g., 100 attacks out of 10 million packets, 0.01% FP rate
 - How many false alarms?

Adversarial challenges

- FP/FN statistics based on a fixed set of attacks
- But attackers won’t keep using techniques that are detected
 - Instead, will look for:
 - Existing attacks that are not detected
 - Minimal changes to attacks
 - Truly novel attacks

Wagner and Soto mimicry attack

- Host-based IDS based on sequence of syscalls
- Compute $A \cap M$, where:
 - A models allowed sequences
 - M models sequences achieving attacker’s goals
- Further techniques required:
 - Many syscalls made into NOPs
 - Replacement subsequences with similar effect

Outline

- Intrusion detection systems
- Malware and the network
- Announcements intermission
- Denial of service and the network
- Anonymous communications techniques
- Tor basics
- Tor experiences and challenges

Malicious software

- Shortened to Mal…ware
- Software whose inherent goal is malicious
 - Not just used for bad purposes
- Strong adversary
- High visibility
- Many types

Trojan (horse)

- Looks benign, has secret malicious functionality
- Key technique: fool users into installing/running
- Concern dates back to 1970s, MLS

(Computer) viruses

- Attaches itself to other software
- Propagates when that program runs
- Once upon a time: floppy disks
- More modern: macro viruses
- Have declined in relative importance

Worms

- Completely automatic self-propagation
- Requires remote security holes
- Classic example: 1988 Morris worm
- "Golden age" in early 2000s
- Internet-level threat seems to have declined
Fast worm propagation

- Initial hit-list
 - Pre-scan list of likely targets
 - Accelerate cold-start phase
- Permutation-based sampling
 - Systematic but not obviously patterned
 - Pseudorandom permutation
- Approximate time: 15 minutes
 - "Warhol worm"
 - Too fast for human-in-the-loop response

Getting underneath

- Lower-level/higher-privilege code can deceive normal code
- Rootkit: hide malware by changing kernel behavior
- MBR virus: take control early in boot
- Blue-pill attack: malware is a VMM running your system

Malware motivation

- Once upon a time: curiosity, fame
- Now predominates: money
 - Modest-size industry
 - Competition and specialization
- Also significant: nation-states
 - Industrial espionage
 - Stuxnet (not officially acknowledged)

User-based monetization

- Adware, mild spyware
- Keyloggers, stealing financial credentials
- Ransomware
 - Application of public-key encryption
 - Malware encrypts user files
 - Only $300 for decryption key

Bots and botnets

- Bot: program under control of remote attacker
- Botnet: large group of bot-infected computers with common "master"
- Command & control network protocol
 - Once upon a time: IRC
 - Now more likely custom and obfuscated
 - Centralized → peer-to-peer
 - Gradually learning crypto and protocol lessons

Bot monetization

- Click (ad) fraud
- Distributed DoS (next section)
- Bitcoin mining
- Pay-per-install (subcontracting)
- Spam sending

Malware/anti-virus arms race

- "Anti-virus" (AV) systems are really general anti-malware
- Clear need, but hard to do well
- No clear distinction between benign and malicious
- Endless possibilities for deception

Signature-based AV

- Similar idea to signature-based IDS
- Would work well if malware were static
- In reality:
 - Large, changing database
 - Frequent updated from analysts
 - Not just software, a subscription
 - Malware stays enough ahead to survive
Emulation and AV
- Simple idea: run sample, see if it does something evil
- Obvious limitation: how long do you wait?
- Simple version can be applied online
- More sophisticated emulators/VMs used in backend analysis

Polymorphism
- Attacker makes many variants of starting malware
- Different code sequences, same behavior
- One estimate: 30 million samples observed in 2012
- But could create more if needed

Packing
- Sounds like compression, but real goal is obfuscation
- Static code creates real code on the fly
- Or, obfuscated bytecode interpreter
- Outsourced to independent “protection” tools

Fake anti-virus
- Major monetization strategy recently
- Your system is infected, pay $19.95 for cleanup tool
- For user, not fundamentally distinguishable from real AV

Outline
- Intrusion detection systems
- Malware and the network
- Announcements intermission
- Denial of service and the network
- Anonymous communications techniques
- Tor basics
- Tor experiences and challenges

Tunneling question
A “captive portal” on a WiFi network directs all HTTP traffic to a login web server. Which kind of tunneling might slowly circumvent this?
- A. DNS over HTTPS
- B. UDP over TCP
- C. SOCKS over SSH
- D. IP over DNS
- E. HTTPS over HTTP

Upcoming important dates
- Exercise set 4 due tonight
- Hands-on assignment 2 due Friday night
- Last project progress reports due next Wednesday
- 11/27
 - Include a sample of report formatting
 - MS Word, LaTeX, Overleaf options

Spring special topics course
- CSci 5980/8980, Manual and Automated Binary Reverse Engineering
- Wouldn’t HA1 have been more fun if you didn’t get the source code?
- Studying disassembled code by hand, and with open-source and research tools
- Only prerequisite is CSci 2021 (or similar)
- 5271-like project
DoS versus other vulnerabilities

- Effect: normal operations merely become impossible
- Software example: crash as opposed to code injection
- Less power than complete compromise, but practical severity can vary widely
 - Airplane control DoS, etc.

When is it DoS?

- Very common for users to affect others’ performance
- Focus is on unexpected and unintended effects
- Unexpected channel or magnitude

Algorithmic complexity attacks

- Can an adversary make your algorithm have worst-case behavior?
- $O(n^2)$ quicksort
- Hash table with all entries in one bucket
- Exponential backtracking in regex matching

XML entity expansion

- XML entities (c.f. HTML <) are like C macros

  ```
  #define B (A+A+A+A+A)
  #define C (B+B+B+B+B)
  #define D (C+C+C+C+C)
  #define E (D+D+D+D+D)
  #define F (E+E+E+E+E)
  ```

Compression DoS

- Some formats allow very high compression ratios
 - Simple attack: compress very large input
 - More powerful: nested archives
 - Also possible: “zip file quine” decompresses to itself

DoS against network services

- Common example: keep legitimate users from viewing a web site
- Easy case: pre-forked server supports 100 simultaneous connections
- Fill them with very very slow downloads

Tiny bit of queueing theory

- Mathematical theory of waiting in line
- Simple case: random arrival, sequential fixed-time service
 - $M/D/1$
- If arrival rate \geq service rate, expected queue length grows without bound
SYN flooding
- SYN is first of three packets to set up new connection
- Traditional implementation allocates space for control data
- However much you allow, attacker fills with unfinished connections
- Early limits were very low (10-100)

SYN cookies
- Change server behavior to stateless approach
- Embed small amount of needed information in fields that will be echoed in third packet
 - MAC-like construction
- Other disadvantages, so usual implementations used only under attack

DoS against network links
- Try to use all available bandwidth, crowd out real traffic
- Brute force but still potentially effective
- Baseline attacker power measured by packet sending rate

Traffic multipliers
- Third party networks (not attacker or victim)
- One input packet causes n output packets
- Commonly, victim's address is forged source, multiply replies
- Misuse of debugging features

“Smurf” broadcast ping
- ICMP echo request with forged source
- Sent to a network broadcast address
- Every recipient sends reply
- Now mostly fixed by disabling this feature

Distributed DoS
- Many attacker machines, one victim
- Easy if you own a botnet
- Impractical to stop bots one-by-one
- May prefer legitimate-looking traffic over weird attacks
 - Main consideration is difficulty to filter

Outline
- Intrusion detection systems
- Malware and the network
- Announcements intermission
- Denial of service and the network
- Anonymous communications techniques
- Tor basics
- Tor experiences and challenges

Traffic analysis
- What can you learn from encrypted data? A lot
- Content size, timing
- Who's talking to who
 - countermeasure: anonymity
Nymity slider (Goldberg)
- Verinymity
- Social security number
- Persistent pseudonymity
 - Pen name ("George Eliot"); "moot"
- Linkable anonymity
 - Frequent-shopper card
- Unlinkable anonymity
 - (Idealized) cash payments

Nymity ratchet?
- It's easy to add names on top of an anonymous protocol
- The opposite direction is harder
- But, we're stuck with the Internet as is
- So, add anonymity to conceal underlying identities

Steganography
- One approach: hide real content within bland-looking cover traffic
- Classic: hide data in least-significant bits of images
- Easy to fool casual inspection, hard if adversary knows the scheme

Dining cryptographers

DC-net challenges
- Quadratic key setups and message exchanges per round
- Scheduling who talks when
- One traitor can anonymously sabotage
- Improvements subject of ongoing research

Mixing/shuffling
- Computer analogue of shaking a ballot box, etc.
- Reorder encrypted messages by a random permutation
- Building block in larger protocols
- Distributed and verifiable variants possible as well

Anonymous remailers
- Anonymizing intermediaries for email
 - First cuts had single points of failure
- Mix and forward messages after receiving a sufficiently-large batch
- Chain together mixes with multiple layers of encryption
- Fancy systems didn’t get critical mass of users

Outline
- Intrusion detection systems
- Malware and the network
- Announcements intermission
- Denial of service and the network
- Anonymous communications techniques
- Tor basics
- Tor experiences and challenges

Tor: an overlay network
- Tor (originally from “the onion router”)
 - https://www.torproject.org/
- An anonymous network built on top of the non-anonymous Internet
- Designed to support a wide variety of anonymity use cases

Low-latency TCP applications
- Tor works by proxying TCP streams
 - (And DNS lookups)
- Focuses on achieving interactive latency
 - WWW, but potentially also chat, SSH, etc.
 - Anonymity tradeoffs compared to remailers

Client perspective
- Install Tor client running in background
- Configure browser to use Tor as proxy
 - Or complete Tor+Proxy+Browser bundle
- Browse web as normal, but a lot slower
 - Also, sometimes google.com is in Swedish
Entry/guard relays
- "Entry node": first relay on path
- Entry knows the client's identity, so particularly sensitive
- Many attacks possible if one adversary controls entry and exit
- Choose a small random set of "guards" as only entries to use
- Rotate slowly or if necessary
- For repeat users, better than random each time

Exit relays
- Forwards traffic to/from non-Tor destination
- Focal point for anti-abuse policies
 - E.g., no exits will forward for port 25 (email sending)
- Can see plaintext traffic, so danger of sniffing, MITM, etc.

Centralized directory
- How to find relays in the first place?
- Straightforward current approach: central directory servers
- Relay information includes bandwidth, exit policies, public keys, etc.
- Replicated, but potential bottleneck for scalability and blocking

Outline
- Intrusion detection systems
- Malware and the network
- Announcements intermission
- Denial of service and the network
- Anonymous communications techniques
- Tor basics
- Tor experiences and challenges

Anonymity loves company
- Diverse user pool needed for anonymity to be meaningful
 - Hypothetical Department of Defense Anonymity Network
- Tor aims to be helpful to a broad range of (sympathetic sounding) potential users

Who (arguably) needs Tor?
- Consumers concerned about web tracking
- Businesses doing research on the competition
- Citizens of countries with Internet censorship
- Reporters protecting their sources
- Law enforcement investigating targets

Tor and the US government
- Onion routing research started with the US Navy
- Academic research still supported by NSF
- Anti-censorship work supported by the State Department
 - Same branch as Voice of America
- But also targeted by the NSA
 - Per Snowden, so far only limited success

Volunteer relays
- Tor relays are run basically by volunteers
 - Most are idealistic
 - A few have been less-ethical researchers, or GCHQ
- Never enough, or enough bandwidth
- P2P-style mandatory participation?
 - Unworkable/undesirable
- Various other kinds of incentives explored
Performance
- Increased latency from long paths
- Bandwidth limited by relays
- Recently 1-2 sec for 50KB, 3-7 sec for 1MB
- Historically worse for many periods
 - Flooding (guessed botnet) fall 2013

Anti-censorship
- As a web proxy, Tor is useful for getting around blocking
- Unless Tor itself is blocked, as it often is
- Bridges are special less-public entry points
- Also, protocol obfuscation arms race (uneven)

Hidden services
- Tor can be used by servers as well as clients
- Identified by cryptographic key, use special rendezvous protocol
- Servers often present easier attack surface

Undesirable users
- P2P filesharing
 - Discouraged by Tor developers, to little effect
- Terrorists
 - At least the NSA thinks so
- Illicit e-commerce
 - "Silk Road" and its successors

Intersection attacks
- Suppose you use Tor to update a pseudonymous blog, reveal you live in Minneapolis
- Comcast can tell who in the city was sending to Tor at the moment you post an entry
 - Anonymity set of 1000 → reasonable protection
- But if you keep posting, adversary can keep narrowing down the set

Exit sniffing
- Easy mistake to make: log in to an HTTP web site over Tor
- A malicious exit node could now steal your password
- Another reason to always use HTTPS for logins

Browser bundle JS attack
- Tor's Browser Bundle disables many features try to stop tracking
- But, JavaScript defaults to on
 - Usability for non-expert users
 - Fingerprinting via NoScript settings
- Was incompatible with Firefox auto-updating
- Many Tor users de-anonymized in August 2013 by JS vulnerability patched in June

Traffic confirmation attacks
- If the same entity controls both guard and exit on a circuit, many attacks can link the two connections
 - "Traffic confirmation attack"
 - Can't directly compare payload data, since it is encrypted
- Standard approach: insert and observe delays
- Protocol bug until recently: covert channel in hidden service lookup
Hidden service traffic conf.
- Bug allowed signal to guard when user looked up a hidden service
- Non-statistical traffic confirmation
- For 5 months in 2014, 115 guard nodes (about 6%) participated in this attack
 - Apparently researchers at CMU’s SEI/CERT
- Beyond “research,” they also gave/sold info. to the FBI
 - Apparently used in Silk Road 2.0 prosecution, etc.

Next time
- How usability affects security