Elections as a challenge problem

- Elections require a tricky balance of openness and secrecy
- Important to society as a whole
- But not a big market
- Computer security experts react to proposals that seem insecure

History of US election mechanisms

- For first century or so, no secrecy
 - Secret ballot adopted in late 1800s
- Punch card ballots allowed machine counting
 - Common by 1960s, as with computers
 - Still common in 2000, decline thereafter
- How to add more technology and still have high security?

Election integrity

- Tabulation should reflect actual votes
 - No valid votes removed
 - No fake votes inserted
- Best: attacker can't change votes
- Easier: attacker can't change votes without getting caught

Secrecy, vote buying and coercion

- Alice's vote can't be matched with her name (unlinkable anonymity)
- Alice can't prove to Bob who she voted for (receipt-free)
- Best we can do to discourage:
 - Bob pays Alice $50 for voting for Charlie
 - Bob fires Alice if she doesn't vote for Charlie

Election verifiability

- We can check later that the votes were tabulated correctly
- Alice, that her vote was correctly cast
- Anyone, that the counting was accurate
- In paper systems, “manual recount” is a privileged operation

Politics and elections

- In a stable democracy, most candidates will be “pro-election”
- But, details differ based on political realities
- “Voting should be easy and convenient”
 - Especially for people likely to vote for me
- ”No one should vote who isn’t eligible”
 - Especially if they’d vote for my opponent
Errors and Florida

- Detectable mistakes:
 - Overvote: multiple votes in one race
 - Undervote: no vote in a race, also often intentional
- Undetectable mistakes: vote for wrong candidate
- 2000 presidential election in Florida illustrated all these, “wake-up call”

Precinct-count optical scan

- Good current paper system, used here in MN
- Voter fills in bubbles with pen
- Ballot scanned in voter’s presence
 - Can reject on overvote
- Paper ballot retained for auditing

Vote by mail

- By mail universal in Oregon and Washington
- Many other states have lenient absentee systems
- Some people are legitimately absent
- Security perspective: makes buying/coercion easy
 - Doesn’t appear to currently be a big problem

Vote by web?

- An obvious next step
- But, further multiplies the threats
- No widespread use in US yet
- Unusual adversarial test in DC. thoroughly compromised by U. Michigan team

DRE (touchscreen) voting

- “Direct-recording electronic”: basically just a computer that presents and counts votes
- In US, touchscreen is predominant interface
 - Cheaper machines may just have buttons
- Simple, but centralizes trust in the machine

Adding an audit trail

- VVPAT: voter-verified paper audit trail
- DRE machine prints a paper receipt that the voter looks at
- Goal is to get the independence and verifiability of a paper marking system

Outline

- Elections and their security
- System security of electronic voting
- Announcements intermission
- End-to-end verification

Trusted client problem

- Everything the voter knows is mediated by the machine
 - (For Internet or DRE without VVPAT)
- Must trust machine to present and record accurately
- A lot can go wrong
 - Especially if the machine has a whole desktop OS inside
 - Or a bunch of poorly audited custom code
Should we use DRE at all?
- One answer: no, that's a bad design
- More pragmatic: maybe we can make this work
 - DREs have advantages in cost, disability access
 - If we implemented them well, they should be OK
 - Challenge: evaluating them in advance

US equipment market
- Voting machines are low volume, pretty expensive
- But jurisdictions are cost-conscious
- Makers are mostly small companies
 - One was temporarily owned by the larger Diebold
- Big market pressures: regulations, ease of administration

Security ecosystem
- Voting fraud appears to be very rare
 - Few elections worth stealing
 - Important ones are watched closely
 - Stiff penalties deter in-US attackers
- Downside: No feedback from real attacks
- Main mechanism is certification, with its limitations

Diebold case study
- Major manufacturer in early 2000s
 - During a post-2000 purchasing boom
 - Since sold and renamed
- Thoroughly targeted by independent researchers
 - Impolitic statement, blood in the water
- Later state-authorized audits found comprehensive problems
 - Your reading: from California

Physical security
- Locked case; cheap lock as in hotel mini-bar
- Device displays management menu on detected malfunction
 - Can be triggered in booth by unspecified use of paperclip
- Tamper-evident seals? Not a strong protection

Web-like vulnerabilities
In management workstation software:
- SQL injection
- Authentication logic encoded only in enabled/disabled UI elements
 - E.g., buttons grayed out if not administrator
 - Not quite as obviously wrong as in web context
 - But still exploitable with existing tools

OpenSSL mistakes
- Good news: they used OpenSSL
- Bad news: old, buggy version
- Insufficient entropy in seeding PRNG
 - Good interface from desktop Windows missing in WinCE
- Every device ships with same certificate and password

Buffer overflows, etc.
- Format string vulnerability
 - "Page %d of %d"
- Was this audited?

 TCHAR name;
 _stprintf(&name,
 _T("\Storage Card\%s"),
 findData.cFileName);
Election definitions

- Integrity “protected” by unkeyed, non-crypto checksum
- Can change bounding boxes for buttons
 - Without changing checksum!
- Can modify candidate names used in final report
 - E.g. to fix misspelling; security implication mentioned in comment

Secrecy problems

- Limited, since the DRE doesn’t see registration information
- But, records timestamp and order of voting
- Could be correlated with hidden camera or corrupted poll worker

Voting machine viruses

- Two-way data flow between voting and office machines
- Hijacking vuln’s in software on both sides
- Can write virus to propagate between machines
- Leverage small amount of physical access

Subtle ways to steal votes

- Change a few votes your way, revert if the voter notices
 - Compare: flip coin to split lunch
- Control the chute for where VVPAT receipts go
- Exchange votes between provisional and regular voters

Outline

- Elections and their security
- System security of electronic voting
- Announcements intermission
- End-to-end verification

Note to early readers

- This is the section of the slides most likely to change in the final version
- If class has already happened, make sure you have the latest slides for announcements

Outline

- Elections and their security
- System security of electronic voting
- Announcements intermission
- End-to-end verification

End-to-end integrity and verification

- Tabulation cannot be 100% public
- But how can we still have confidence in it?
- Cryptography to the rescue, maybe
 - Techniques from privacy systems, others
 - Adoption requires to be very usable
Commitment to values

- Two phases: commit, later open
 - Similar to one use of envelopes
- Binding property: can only commit to a single value
- Hiding property: value not revealed until opened

Randomized auditing

- How can I prove what’s in the envelope without opening it?
- \(n \) envelopes, you pick one and open the rest
 - Chance \(1/n \) of successful cheating
- Better protection with repetition

Election mix-nets

- Independent election authorities similar to remailers
- Multi-encrypt ballot, each authority shuffles and decrypts
- Extra twist: prove no ballots added or removed, without revealing permutation
 - Instance of “zero-knowledge proof”
- Privacy preserved as long as at least one authority is honest

Pattern voting attack

- Widely applicable against techniques that reveal whole (anonymized) ballots
- Even a single race, if choices have enough entropy
 - 3-choice IRV with 35 candidates: 15 bits
- Buyer says: vote first for Bob, then 2nd and 3rd for Kenny and Xavier
 - Chosen so ballot is unique

Fun tricks with paper: visual crypto

- Want to avoid trusted client, but voters can’t do computations by hand
- Analogues to crypto primitives using physical objects
- One-time pad using transparencies:

![Transparencies](image)

Scantegrity II

- Designed as end-to-end add-on to optical scan system
- Fun with paper 2: invisible ink
- Single trusted shuffle
 - Checked by random audits of commitments