1. Let X be an $m \times n$ matrix, with $m \geq n$, that is of full rank. Show that X^TX is nonsingular. [Hint: By making judicious use of inner products, show that $X^TY = 0$ implies that $Xy = 0$ which in turn implies that $y = 0$.]

2. Show that $A \in \mathbb{R}^{m \times n}$ is of rank 1 if and only if there are two vectors $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ such that $A = uv^T$. Generalize this to the case where the rank is $p > 1$ (with $p \leq \min\{m, n\}$) i.e., show that a matrix $A \in \mathbb{R}^{m \times n}$ is of rank p if and only if there exists a full-rank matrix $X \in \mathbb{R}^{m \times p}$ and a full-rank matrix $Y \in \mathbb{R}^{n \times p}$ such that $A = XY^T$.

3. Let A be an $n \times n$ matrix whose only nonzero entries are in the first column and first row (i.e., $a_{i,j} = 0$ when $i > 1$ and $j > 1$). (a) Show that A is of rank ≤ 2. When is the rank less than 2? (b) Assume that in addition A is symmetric and that $a_{11} = 1$. Show that there exist two vectors u and v such that $A = uu^T - vv^T$.

4. Let T be a symmetric Toeplitz matrix $T = [t_{i-j}]_{i,j=1}^n$ with $t_0 = 1$ and define the $n \times n$ lower triangular shift matrix Z:

$$Z = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 \end{pmatrix}$$

(a) Show that the matrix $D = T - ZTZ^T$ has rank 2. [Hints: For a matrix X what are the columns of XZ^T? What are the rows of ZX? Then use the result of the previous exercise.] (b) Show that D can be written as $D = uu^T - vv^T$ for certain vectors u, v to be specified. (Note: D is called the displacement of T with respect to Z and the rank of D is the displacement rank of T. Matrices with low displacement ranks have been extensively studied.)

5. Are the following functions from \mathbb{R}^n to \mathbb{R} vector norms? (prove or disprove).

$$(a) : N(x) = \sum_{i=1}^{n} \frac{x^2_i}{2}; \quad (b) : N(x) = \left[\sum_{i=1}^{n} |x_i|^{1/3} \right]^3; \quad (c) : N(x) = \left[\sum_{i=1}^{n} |x_i| \right]^3;$$

6. Let $\| \cdot \|$ be a norm in \mathbb{R}^n. Define:

$$\|x\|' = \sup\{u^T x : u \in \mathbb{R}^n, \|u\| = 1\}$$

(a) Prove that this equation defines a norm (called the “dual norm” of $\| \cdot \|$).

(b) Show that for all $x, y \in \mathbb{R}^n$ we have

$$|x^Ty| \leq \|x\| \|y\|'$$

(c) What is the dual norm of $\| \cdot \|_1$?
7. (a) Calculate $\|A\|_1, \|A\|_\infty$ for the matrix:

$$A = \begin{pmatrix}
1 & 6 & 0 \\
6 & -1 & 3 \\
-2 & 3 & 5
\end{pmatrix}$$

(b) Among all vectors x satisfying $\|x\|_\infty \leq 1$ find one for which $\|Ax\|_\infty$ is the largest possible.

(c) Among all vectors x satisfying $\|x\|_1 \leq 1$ find one for which $\|Ax\|_1$ is the largest possible.

(d) (Use matlab) Calculate the 2-norm of A. Among all vectors x satisfying $\|x\|_2 \leq 1$ find one for which $\|Ax\|_2$ is the largest possible.

8. Let B be unitary of dimension $n \times n$ and A be an arbitrary matrix of dimension $n \times n$. Show that $\|AB\|_F = \|A\|_F$. Assume now that B is $m \times n$ and orthogonal ($m > n$). Show that $\|BA\|_F = \|A\|_F$.

9. [Matlab Exercise]
 a. Compute the 1-norm, the 2-norm, the infinity norm and the Frobenius norm of the matrix:

 $$\begin{pmatrix}
 -1 & 2 & 1 \\
 0 & 0 & 0 \\
 -2 & 3 & 0 \\
 1 & -1 & 1 \\
 2 & -1 & 4
 \end{pmatrix}$$

 b. Find the eigenvalues and the spectral radius of $A(2 : 4,:)$

 c. Find the singular values of A. What is the nuclear norm of A? What is its Schatten 3-norm? From the singular values what can you say about the determinant of $A^T A$?

 d. Using the result of Question 1, and the information on the determinant of question (c) above show that the matrix A does not have full rank. Use matlab’s ‘rank’ function to determine the rank of A.

 e. Explore the “reduced row echelon form” function of matlab called rref. Once you understand what the rref function does, use it to find the RREF form of A. Can you explain in words what was done to obtain this form? [recall Gauss-Jordan elimination].