1. Consider the matrix

\[
A = \begin{pmatrix}
4 & -2 & 4 \\
-2 & 2 & -2 \\
4 & -2 & 8
\end{pmatrix}
\]

(a) Find the LU factorization of \(A \) (no pivoting);
(b) Find its LDLT factorization from the previous question;
(c) Find its Cholesky factorization (again using (a)).
(d) Suppose you want to decrease \(a_{33} \) from its value of 8, so that the modified \(A \) remains positive definite. What is the lower limit for \(a_{33} \) (also say if the limit is itself acceptable).

2. The Hald cement data is used in several books and papers as an example of regression analysis.

The right-hand side is the heat evolved in cement during hardening, and the explanatory variables are four different ingredients \(x_1, \ldots, x_4 \) of the mix. The right-hand side \(b \) and the matrix \(A = [a_1, \ldots, a_4] \) corresponding to 13 measurements, are available from the script \texttt{Hald.m} which you will find in the matlab section of the class web-site. [Incidentally this is available if you have access to the Statistics and Machine Learning Toolbox – simply type \texttt{load hald}.] In what follows, \(e \) is the vector of all ones. We modify \(A \) by adding to it the column \(e \) as a first column (\(A = [\text{ones}(13, 1), A] \) in Matlab). This corresponds to adding a constant to the regression model: so the model is is of the form \(b = x_0 + a_1x_1 + \cdots + a_4x_4 \).

(a) Solve the least squares problem \(\min \| b - Ax \|_2 \) by the method of normal equations. Obtain \(\kappa_2(A) \).

(b) We now show how to get rid of the constant unknown from the system. Write \(x = \begin{pmatrix} \xi \\ y \end{pmatrix} \) where \(\xi \) is a scalar, and show how to eliminate \(\xi \) from the system [Hint: Start with the orthogonality conditions for optimality but restrict these to only one condition involving the vector \(e \)]. The resulting problem is now a least-squares problem of the form \(\min \| By - c \|_2 \) involving only the \(y \) vector. What are \(B \) and \(c \)? What is the condition number of this reduced problem?

(c) Continued from (b) How can you interpret \(c \) relative to \(b \) and \(B \) relative to \(X \)? [Hint: What is \(e^T B \) ? What is \(e^T c \) ?]

3. The purpose of this exercise is to test 3 different ways of computing the QR factorization of a matrix \(A \)

(a) The classical Gram-Schmidt algorithm
(b) The modified Gram-Schmidt algorithm
(c) The Cholesky factorization of \(A^T A \)

Explain how the Cholesky factorization of \(A^T A \) can be used. In the following you should use the script \texttt{cholR} that is posted (not the \texttt{chol} function from matlab). You can use \texttt{inv} to invert triangular matrices.

A data set is posted on the class web-site (see the matlab page). Write a script which loads the matrix and then for each of the three methods above compute the \(Q \) and \(R \) factors and the error measures

\[
\| A - Q \ast R \|_2, \quad \| I - Q^T \ast Q \|_2
\]
Present your result in the form of a table and comment on them.

4. Let A be an $m \times n$ real matrix of full rank. Prove that if $\|Au\|_2 = \|u\|_2$ for all vectors $u \in \mathbb{R}^n$ then A is an orthogonal matrix (i.e., $A^TA = I$). [Hint: There are several ways of doing this. One of them is to exploit the exercise 4 of Lecture notes set number 6.]

5. You will find in the class web-site [see matlab page], a sample set of seasonal farm employment data (t_i, y_i) over about an 18 month period, where t_i represents months, and y_i is the employed population in millions. It is thought that this population, $y(t)$, evolves with time according to a function of the form:

$$y(t) = a_1 + a_2 t + a_3 \cos t.$$

Find a_1, a_2, a_3 by least-squares data fitting. Then plot the function you find. On the same plot show also the observed population [using a square for each point].