THE SINGULAR VALUE DECOMPOSITION (Cont.)

- The Pseudo-inverse
- Use of SVD for least-squares problems
- Application to regularization
- Numerical rank

Pseudo-inverse of an arbitrary matrix

Let \(A = U \Sigma V^T \) which we rewrite as

\[
A = (U_1 \ U_2) \begin{pmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} V_1^T \\ V_2^T \end{pmatrix} = U_1 \Sigma_1 V_1^T
\]

Then the pseudo-inverse of \(A \) is

\[
A^+ = V_1 \Sigma_1^{-1} U_1^T = \sum_{j=1}^{r} \frac{1}{\sigma_j} v_j u_j^T
\]

The pseudo-inverse of \(A \) is the mapping from a vector \(b \) to the solution \(\min_x \| Ax - b \|_2^2 \) that has minimal norm (to be shown)

In the full-rank overdetermined case, the normal equations yield

\[
x = (A^T A)^{-1} A^T b
\]

Least-squares problem via the SVD

Pb: \(\min \| b - Ax \|_2 \) in general case. Consider SVD of \(A \):

\[
A = (U_1 \ U_2) \begin{pmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} V_1^T \\ V_2^T \end{pmatrix} = \sum_{i=1}^{r} \sigma_i v_i u_i^T
\]

Then left multiply by \(U^T \) to get

\[
\| Ax - b \|_2^2 = \left\| \begin{pmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} - \begin{pmatrix} U_1^T \\ U_2^T \end{pmatrix} b \right\|_2^2
\]

with \(\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} V_1^T \\ V_2^T \end{pmatrix} x \)

Answer: From above, must have \(y_1 = \Sigma_1^{-1} U_1^T b \) and \(y_2 = \) anything (free).

Recall that \(x = V y \) and write

\[
x = [V_1, V_2] \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = V_1 y_1 + V_2 y_2 = V_1 \Sigma_1^{-1} U_1^T b + V_2 y_2 = A^+ b + V_2 y_2
\]

Note: \(A^+ b \in \text{Ran}(A^T) \) and \(V_2 y_2 \in \text{Null}(A) \).

Therefore: least-squares solutions are of the form \(A^+ b + w \) where \(w \in \text{Null}(A) \).

Smallest norm when \(y_2 = 0 \).
Minimum norm solution to \(\min_x \| Ax - b \|_2 \) satisfies \(\Sigma_1 y_1 = U_1^T b, y_2 = 0 \). It is:

\[
x_{LS} = V_1 \Sigma_1^{-1} U_1^T b = A^\dagger b
\]

If \(A \in \mathbb{R}^{m \times n} \) what are the dimensions of \(A^\dagger \), \(A^\dagger A \), \(AA^\dagger \)?

Show that \(A^\dagger A \) is an orthogonal projector. What are its range and null-space?

Same questions for \(AA^\dagger \).

Moore-Penrose Inverse

The pseudo-inverse of \(A \) is given by

\[
A^\dagger = V \begin{pmatrix} \Sigma^{-1} & 0 \\ 0 & 0 \end{pmatrix} U^T = \sum_{i=1}^r \frac{v_i u_i^T}{\sigma_i}
\]

Moore-Penrose conditions:

The pseudo inverse of a matrix is uniquely determined by these four conditions:

1. \(AXA = A \)
2. \(XAX = X \)
3. \((AX)^H = AX \)
4. \((XA)^H = XA \)

In the full-rank overdetermined case, \(A^\dagger = (A^T A)^{-1} A^T \)

Least-squares problems and the SVD

SVD can give much information about solving overdetermined and underdetermined linear systems.

Let \(A \) be an \(m \times n \) matrix and \(A = U \Sigma V^T \) its SVD with \(r = \text{rank}(A) \), \(V = [v_1, \ldots, v_n] \), \(U = [u_1, \ldots, u_m] \). Then

\[
x_{LS} = \sum_{i=1}^r \frac{u_i^T b}{\sigma_i} v_i
\]

minimizes \(\| b - Ax \|_2 \) and has the smallest 2-norm among all possible minimizers. In addition,

\[
\rho_{LS} \equiv \| b - Ax_{LS} \|_2 = \| z \|_2 \text{ with } z = [u_{r+1}, \ldots, u_m]^T b
\]

Least-squares problems and pseudo-inverses

A restatement of the first part of the previous result:

Consider the general linear least-squares problem

\[
\min_{x \in S} \| x \|_2, \quad S = \{ x \in \mathbb{R}^n \mid \| b - Ax \|_2 \text{ min.} \}
\]

This problem always has a unique solution given by

\[
x = A^\dagger b
\]
Consider the matrix:

\[
A = \begin{pmatrix}
1 & 0 & 2 & 0 \\
0 & 0 & -2 & 1
\end{pmatrix}
\]

- Compute the thin SVD of \(A\).
- Find the matrix \(B\) of rank 1 which is the closest to the above matrix in the 2-norm sense.
- What is the pseudo-inverse of \(A\)?
- What is the pseudo-inverse of \(B\)?
- Find the vector \(x\) of smallest norm which minimizes \(\|b - Ax\|_2\) with \(b = (1, 1)^T\).
- Find the vector \(x\) of smallest norm which minimizes \(\|b - Bx\|_2\) with \(b = (1, 1)^T\).

Ill-conditioned systems and the SVD

- Let \(A\) be \(m \times m\) and \(A = U\Sigma V^T\) its SVD.
- Solution of \(Ax = b\) is \(x = A^{-1}b = \sum_{i=1}^{m} \frac{u_i^T b}{\sigma_i} v_i\)
- When \(A\) is very ill-conditioned, it has many small singular values. The division by these small \(\sigma_i\)'s will amplify any noise in the data. If \(\tilde{b} = b + \epsilon\) then

\[
A^{-1}\tilde{b} = \sum_{i=1}^{m} \frac{u_i^T \tilde{b}}{\sigma_i} v_i + \sum_{i=1}^{m} \frac{u_i^T \epsilon}{\sigma_i} v_i
\]

Numerical rank and the SVD

- Assuming the original matrix \(A\) is exactly of rank \(k\) the computed SVD of \(A\) will be the SVD of a nearby matrix \(A + E\) – Can show: \(|\hat{\sigma}_i - \sigma_i| \leq \alpha \sigma_1 u\)
- Result: zero singular values will yield small computed singular values and \(r\) larger sing. values.
- Reverse problem: numerical rank – The \(\epsilon\)-rank of \(A\):

\[
r_\epsilon = \min\{\text{rank}(B) : B \in \mathbb{R}^{m \times n}, \|A - B\|_2 \leq \epsilon\},
\]

Remedy: SVD regularization

Truncate the SVD by only keeping the \(\sigma_i\)'s that are \(\geq \tau\), where \(\tau\) is a threshold.

- Gives the Truncated SVD solution (TSVD solution:)

\[
x_{TSVD} = \sum_{\sigma_i \geq \tau} \frac{u_i^T b}{\sigma_i} v_i
\]

- Many applications [e.g., Image and signal processing,...]

Show that \(r_\epsilon\) **equals the number sing. values that are \(\geq \epsilon\)**

Show that \(r_\epsilon\) **equals the number of columns of** \(A\) **that are linearly independent for any perturbation of** \(A\) **with norm \(\leq \epsilon\).**

Practical problem: How to set \(\epsilon\)?
Pseudo inverses of full-rank matrices

Case 1: \(m > n \) Then \(A^\dagger = (A^T A)^{-1} A^T \)

- Thin SVD is \(A = U_1 \Sigma_1 V_1^T \) and \(V_1, \Sigma_1 \) are \(n \times n \). Then:
 \[
 (A^T A)^{-1} A^T = (V_1 \Sigma_1^2 V_1^T)^{-1} V_1 \Sigma_1 U_1^T \\
 = V_1 \Sigma_1^{-2} V_1^T V_1 \Sigma_1 U_1^T \\
 = V_1 \Sigma_1^{-1} U_1^T \\
 = A^\dagger
 \]

Example: Pseudo-inverse of \[
\begin{pmatrix}
0 & 1 \\
1 & 2 \\
2 & -1 \\
0 & 1
\end{pmatrix}
\] is?

Case 2: \(m < n \) Then \(A^\dagger = A^T (AA^T)^{-1} \)

- Thin SVD is \(A = U_1 \Sigma_1 V_1^T \). Now \(U_1, \Sigma_1 \) are \(m \times m \) and:
 \[
 A^T (AA^T)^{-1} = V_1 \Sigma_1 U_1^T [U_1 \Sigma_1^2 U_1^T]^{-1} \\
 = V_1 \Sigma_1 U_1^T U_1 \Sigma_1^{-2} U_1^T \\
 = V_1 \Sigma_1 \Sigma_1^{-2} U_1^T \\
 = V_1 \Sigma_1^{-1} U_1^T \\
 = A^\dagger
 \]

Example: Pseudo-inverse of \[
\begin{pmatrix}
0 & 1 & 2 & 0 \\
1 & 2 & -1 & 1
\end{pmatrix}
\] is?

- Mnemonic: The pseudo inverse of \(A \) is \(A^T \) completed by the inverse of the smallest of \((A^T A)^{-1} \) or \((AA^T)^{-1} \) where it fits (i.e., left or right)

10-13 AB: 1.1, 2.2, 2.4; TB: 4-5; GvL 2.4, 5.4-5 – SVD1

10-14 AB: 1.1, 2.2, 2.4; TB: 4-5; GvL 2.4, 5.4-5 – SVD1