A few applications of the SVD

Many methods require to approximate the original data (matrix) by a low rank matrix before attempting to solve the original problem.

- Regularization methods require the solution of a least-squares linear system \(Ax = b \) approximately in the dominant singular space of \(A \).
- The Latent Semantic Indexing (LSI) method in information retrieval, performs the “query” in the dominant singular space of \(A \).
- Methods utilizing Principal Component Analysis, e.g. Face Recognition.

Commonality: Approximate \(A \) (or \(A^\top \)) by a lower rank approximation \(A_k \) (using dominant singular space) before solving original problem.

- This approximation captures the main features of the data while getting rid of noise and redundancy.

Note: Common misconception: ‘we need to reduce dimension in order to reduce computational cost’. In reality: using less information often yields better results. This is the problem of overfitting.

Good illustration: Information Retrieval (IR)

Information Retrieval: Vector Space Model

Given: a collection of documents (columns of a matrix \(A \)) and a query vector \(q \).

- Collection represented by an \(m \times n \) term by document matrix with \(a_{ij} = L_{ij} G_i N_j \).
- Queries (‘pseudo-documents’) \(q \) are represented similarly to a column.

Vector Space Model - continued

- Problem: find a column of \(A \) that best matches \(q \).
- Similarity metric: angle between the column and \(q \) - Use cosines:

\[
\frac{|c^\top q|}{\|c\|_2 \|q\|_2}
\]

- To rank all documents we need to compute

\[
s = A^\top q
\]

- \(s \) = similarity vector.
- Literal matching – not very effective.
Use of the SVD

- Many problems with literal matching: polysemy, synonymy, ...
- Need to extract intrinsic information – or underlying “semantic” information –
- Solution (LSI): replace matrix A by a low rank approximation using the Singular Value Decomposition (SVD)

 $A = U\Sigma V^T \rightarrow A_k = U_k \Sigma_k V_k^T$

- U_k: term space, V_k: document space.
- Refer to this as Truncated SVD (TSVD) approach

New similarity vector:

$s_k = A_k^T q = V_k \Sigma_k U_k^T q$

Issues:

- Problem 1: How to select k?
- Problem 2: computational cost (memory + computation)
- Problem 3: updates [e.g. google data changes all the time]
- Not practical for very large sets

LSI: an example

D1	INFANT & TODLER first aid
D2	BABIES & CHILDREN’s room for your HOME
D3	CHILD SAFETY at HOME
D4	Your BABY’s HEALTH and SAFETY
D5	From INFANT to TODDLER
D6	BABY PROOFING basics
D7	Your GUIDE to easy rust PROOFING
D8	Beanie BABIES collector’s GUIDE
D9	SAFETY GUIDE for CHILD PROOFING your HOME

Source: Berry and Browne, SIAM., ’99

- Number of documents: 8
- Number of terms: 9

Raw matrix (before scaling).

\[
A = \begin{bmatrix}
1 & 1 & 1 & 1 & bab \\
1 & 1 & 1 & 1 & chi \\
1 & 1 & 1 & 1 & gui \\
1 & 1 & 1 & 1 & hea \\
1 & 1 & 1 & 1 & hom \\
1 & 1 & 1 & 1 & inf \\
1 & 1 & 1 & 1 & pro \\
1 & 1 & 1 & 1 & saf \\
1 & 1 & 1 & 1 & tod \\
\end{bmatrix}
\]

Get the answer to the query Child Safety, so

$q = [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0]$

using cosines and then using LSI with $k = 3$.

\[
\begin{align*}
\text{Using cosines:} & \quad s_1 = A_1^T q \\
\text{Using LSI:} & \quad s_3 = A_3^T q
\end{align*}
\]
Dimension reduction

Dimensionality Reduction (DR) techniques pervasive to many applications

- Often main goal of dimension reduction is not to reduce computational cost. Instead:
 - Dimension reduction used to reduce noise and redundancy in data
 - Dimension reduction used to discover patterns (e.g., supervised learning)

- Techniques depend on desirable features or application: Preserve angles? Preserve distances? Maximize variance? ..

The problem

- Given \(d \ll m \) find a mapping \(\Phi : x \in \mathbb{R}^m \rightarrow y \in \mathbb{R}^d \)
- Mapping may be explicit (e.g., \(y = V^T x \))
- Or implicit (nonlinear)

Practically: Find a low-dimensional representation \(Y \in \mathbb{R}^{d \times n} \) of \(X \in \mathbb{R}^{m \times n} \).

- Two classes of methods: (1) projection techniques and (2) nonlinear implicit methods.

Example: Digit images (a sample of 30)

```
Example: Digit images (a sample of 30)
```

```
A few 2-D 'reductions':
```

```
The problem
```

```
Dimension reduction
```

```
Example: Digit images (a sample of 30)
```

```
A few 2-D 'reductions':
```

```
The problem
```

```
Dimension reduction
```

```
Example: Digit images (a sample of 30)
```

```
A few 2-D 'reductions':
```

```
The problem
```

```
Dimension reduction
```

```
Example: Digit images (a sample of 30)
```

```
A few 2-D 'reductions':
```

```
The problem
```

```
Dimension reduction
```

```
Example: Digit images (a sample of 30)
```

```
A few 2-D 'reductions':
```

```
The problem
```

```
Dimension reduction
```

```
Example: Digit images (a sample of 30)
```

```
A few 2-D 'reductions':
```

```
The problem
```

```
Dimension reduction
```

```
Example: Digit images (a sample of 30)
```

```
A few 2-D 'reductions':
```

```
The problem
```

```
Dimension reduction
```

```
Example: Digit images (a sample of 30)
```

```
A few 2-D 'reductions':
```

```
The problem
```

```
Dimension reduction
```

```
Example: Digit images (a sample of 30)
```

```
A few 2-D 'reductions':
```

```
The problem
```

```
Dimension reduction
```
Projection-based Dimensionality Reduction

Given: a data set \(X = [x_1, x_2, \ldots, x_n] \), and \(d \) the dimension of the desired reduced space \(Y \).

Want: a linear transformation from \(X \) to \(Y \)

\[
X \in \mathbb{R}^{m \times n} \\
V \in \mathbb{R}^{m \times d} \\
Y = V^T X \\
\rightarrow Y \in \mathbb{R}^{d \times n}
\]

- \(m \)-dimens. objects \((x_i)\) ‘flattened’ to \(d \)-dimens. space \((y_i)\)

Problem: Find the best such mapping (optimization) given that the \(y_i \)'s must satisfy certain constraints

Principal Component Analysis (PCA)

- PCA: find \(V \) (orthogonal) so that projected data \(Y = V^T X \) has maximum variance

\[
\max_{V} \sum_i \|y_i - \frac{1}{n} \sum_j y_j\|_2^2 = \cdots = \text{Tr} [V^T \bar{X} \bar{X}^T V]
\]

Where: \(\bar{X} = [\bar{x}_1, \ldots, \bar{x}_n] \) with \(\bar{x}_i = x_i - \mu, \mu = \text{mean} \).

Solution:

\[
V = \{ \text{dominant eigenvectors} \} \text{ of the covariance matrix}
\]

- i.e., Optimal \(V = \text{Set of left singular vectors of } \bar{X} \) associated with \(d \) largest singular values.

Matrix Completion Problem

Consider a table of movie ratings. You want to predict missing ratings by assuming commonality (low rank matrix).

\[
\min \| (X - A)_{\text{mask}}\|_F^2 + 4\|X\|_*
\]

"minimize sum-of-squares of deviations from known ratings plus sum of singular values of solution (to reduce the rank)."