Eigenvalue Problems

- Background on eigenvalues/ eigenvectors / decompositions
- Perturbation analysis, condition numbers..
- Power method
- The QR algorithm
- Practical QR algorithms: use of Hessenberg form and shifts
- The symmetric eigenvalue problem.

Eigenvalue Problems. Introduction

Let A an $n \times n$ real nonsymmetric matrix. The eigenvalue problem:

$$Ax = \lambda x$$

$\lambda \in \mathbb{C}$: eigenvalue

$x \in \mathbb{C}^n$: eigenvector

Types of Problems:

- Compute a few λ_i 's with smallest or largest real parts;
- Compute all λ_i's in a certain region of \mathbb{C};
- Compute a few of the dominant eigenvalues;
- Compute all λ_i's.

Basic definitions and properties

A complex scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u in \mathbb{C}^n such that $Au = \lambda u$. The vector u is called an eigenvector of A associated with λ. The set of all eigenvalues of A is the 'spectrum' of A. Notation: $\Lambda(A)$.

\Rightarrow λ is an eigenvalue iff the columns of $A - \lambda I$ are linearly dependent.

\Rightarrow ... equivalent to saying that its rows are linearly dependent. So:

there is a nonzero vector w such that

$$w^T (A - \lambda I) = 0$$

\Rightarrow w is a left eigenvector of A ($u =$ right eigenvector)

\Rightarrow λ is an eigenvalue iff

$$\det(A - \lambda I) = 0$$

Eigenvalue Problems. Their origins

- Structural Engineering [$Ku = \lambda Mu$]
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Bifurcation analysis [e.g., in fluid flow]
- Electronic structure calculations [Schrödinger equation,..]
- Application of new era: page ranking on the world-wide web.
Basic definitions and properties (cont.)

- An eigenvalue is a root of the Characteristic polynomial:

\[p_A(\lambda) = \det(A - \lambda I) \]

- So there are \(n \) eigenvalues (counted with their multiplicities).

- The multiplicity of these eigenvalues as roots of \(p_A \) are called algebraic multiplicities.

- The geometric multiplicity of an eigenvalue \(\lambda_i \) is the number of linearly independent eigenvectors associated with \(\lambda_i \).

Geometric multiplicity is \(\leq \) algebraic multiplicity.

- An eigenvalue is simple if its (algebraic) multiplicity is one.

- It is semi-simple if its geometric and algebraic multiplicities are equal.

Consider

\[
A = \begin{pmatrix} 1 & 2 & -4 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}
\]

Eigenvectors of \(A \)? their algebraic multiplicities? their geometric multiplicities? Is one a semi-simple eigenvalue?

- Same questions if \(a_{33} \) is replaced by one.

- Same questions if, in addition, \(a_{12} \) is replaced by zero.

Transformations that preserve eigenvectors

- Shift: \(B = A - \sigma I \): \(Av = \lambda v \iff Bv = (\lambda - \sigma)v \)
 eigenvalues move, eigenvectors remain the same.

- Polynomial: \(B = p(A) = \alpha_0 I + \cdots + \alpha_n A^n \): \(Av = \lambda v \iff Bv = p(\lambda)v \)
 eigenvalues transformed, eigenvectors remain the same.

- Invert: \(B = A^{-1} \): \(Av = \lambda v \iff Bv = \lambda^{-1}v \)
 eigenvalues inverted, eigenvectors remain the same.

- Shift & Invert: \(B = (A - \sigma I)^{-1} \): \(Av = \lambda v \iff Bv = (\lambda - \sigma)^{-1}v \)
 eigenvalues transformed, eigenvectors remain the same.
 spacing between eigenvalues can be radically changed.
Theorem (Schur form): Any matrix is unitarily similar to a triangular matrix, i.e., for any A there exists a unitary matrix Q and an upper triangular matrix R such that

$$A = QRQ^H$$

- Any Hermitian matrix is unitarily similar to a real diagonal matrix, i.e., its Schur form is real diagonal.
- It is easy to read off the eigenvalues (including all the multiplicities) from the triangular matrix R.
- Eigenvectors can be obtained by back-solving.

Proof:

1. Show that there is at least one eigenvalue and eigenvector of A: $Ax = \lambda x$, with $\|x\|_2 = 1$.
2. There is a unitary transformation P such that $Px = e_1$. How do you define P?
3. Show that $PAP^H = \begin{pmatrix} \lambda & \ast \\ 0 & A_2 \end{pmatrix}$.
4. Apply process recursively to A_2.
5. What happens if A is Hermitian?
6. Another proof altogether: use Jordan form of A and QR factorization.

Perturbation analysis

- General questions: If A is perturbed how does an eigenvalue change? How about an eigenvector?
- Also: sensitivity of an eigenvalue to perturbations.

Theorem [Gerschgorin]

$$\forall \lambda \in \Lambda(A), \exists i \text{ such that } |\lambda - a_{ii}| = \sum_{j=1 \atop j \neq i}^{j=n} |a_{ij}|.$$

- In words: eigenvalue λ is located in one of the closed discs of the complex plane centered at a_{ii} and with radius $\rho_i = \sum_{j \neq i} |a_{ij}|$.

Proof: By contradiction. If contrary is true then there is one eigenvalue λ that does not belong to any of the disks, i.e., such that $|\lambda - a_{ii}| > \rho_i$ for all i. Write matrix $A - \lambda I$ as:

$$A - \lambda I = D - \lambda I - [D - A] \equiv (D - \lambda I) - F$$

where D is the diagonal of A and $-F = -(D - A)$ is the matrix of off-diagonal entries. Now write

$$A - \lambda I = (D - \lambda I)(I - (D - \lambda I)^{-1} F).$$

From assumptions we have $\|(D - \lambda I)^{-1} F\|_\infty < 1$. (Show this). The Lemma in P. 5-3 of notes would then show that $A - \lambda I$ is nonsingular – a contradiction □
Gerschgorin’s theorem - example

Find a region of the complex plane where the eigenvalues of the following matrix are located:

\[A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ -1 & -2 & -3 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 & -4 \end{pmatrix} \]

- Refinement: if disks are all disjoint then each of them contains one eigenvalue
- Refinement: can combine row and column version of the theorem (column version: apply theorem to \(A^H \)).

Bauer-Fike theorem

THEOREM [Bauer-Fike] Let \(\tilde{\lambda}, \tilde{u} \) be an approximate eigenpair with \(\| \tilde{u} \|_2 = 1 \), and let \(r = A \tilde{u} - \tilde{\lambda} \tilde{u} \) (‘residual vector’). Assume \(A \) is diagonalizable: \(A = XDX^{-1} \), with \(D \) diagonal. Then

\[\exists \lambda \in \Lambda(A) \text{ such that } |\lambda - \tilde{\lambda}| \leq \text{cond}_2(X) \| r \|_2. \]

- Very restrictive result - also not too sharp in general.
- Alternative formulation. If \(E \) is a perturbation to \(A \) then for any eigenvalue \(\tilde{\lambda} \) of \(A + E \) there is an eigenvalue \(\lambda \) of \(A \) such that:

\[|\lambda - \tilde{\lambda}| \leq \text{cond}_2(X) \| E \|_2. \]

Conditioning of Eigenvalues

Assume that \(\lambda \) is a simple eigenvalue with right and left eigenvectors \(u \) and \(w^H \) respectively. Consider the matrices:

\[A(t) = A + tE \]

- Eigenvalue \(\lambda(t) \), Eigenvector \(u(t) \).
- Conditioning of \(\lambda \) of \(A \) relative to \(E \) is \(\left| \frac{d\lambda(t)}{dt} \right|_{t=0} \).
- Write \(A(t)u(t) = \lambda(t)u(t) \)
- Then multiply both sides to the left by \(w^H \)

\[w^H(A + tE)u(t) = \lambda(t)w^Hu(t) \rightarrow \lambda(t)w^Hu(t) = w^HAu(t) + tw^HEu(t) \]

\[= \lambda w^Hu(t) + tw^HEu(t). \]

Take the limit at \(t = 0 \), \(\lambda'(0) = \frac{w^HEu}{w^Hu} \)

Note: the left and right eigenvectors associated with a simple eigenvalue cannot be orthogonal to each other.

Actual conditioning of an eigenvalue, given a perturbation “in the direction of \(E \)” is \(|\lambda'(0)|\).

In practice only estimate of \(\| E \| \) is available, so

\[|\lambda'(0)| \leq \frac{\| Eu \|_2 \| w \|_2}{(u, w)} \leq \| E \|_2 \| u \|_2 \| w \|_2 \]

|u, w|
Definition. The condition number of a simple eigenvalue \(\lambda \) of an arbitrary matrix \(A \) is defined by

\[
\text{cond}(\lambda) = \frac{1}{\cos \theta(u, w)}
\]

in which \(u \) and \(w^H \) are the right and left eigenvectors, respectively, associated with \(\lambda \).

Example: Consider the matrix

\[
A = \begin{pmatrix}
-149 & -50 & -154 \\
537 & 180 & 546 \\
-27 & -9 & -25
\end{pmatrix}
\]

\[
\Lambda(A) = \{1, 2, 3\}. \text{ Right and left eigenvectors associated with } \lambda_1 = 1:
\]

\[
u = \begin{pmatrix}
0.3162 \\
-0.9487 \\
0.0
\end{pmatrix}
\]

\[
w = \begin{pmatrix}
0.6810 \\
-0.2253 \\
0.6967
\end{pmatrix}
\]

So:

\[
\text{cond}(\lambda_1) \approx 603.64
\]

Perturbing \(a_{11} \) to \(-149.01\) yields the spectrum:

\[
\{0.2287, 3.2878, 2.4735\}.
\]

as expected.

For Hermitian (also normal matrices) every simple eigenvalue is well-conditioned, since \(\text{cond}(\lambda) = 1 \).

Perturbations with Multiple Eigenvalues - Example

\[
A = \begin{pmatrix}
1 & 2 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{pmatrix} = I_3 + \begin{pmatrix}
0 & 2 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{pmatrix} = I + 2J
\]

Worst case perturbation is in 3,1 position: set \(J_{31} = \epsilon \).

Eigenvalues of perturbed \(A \) are the roots of

\[
p(\mu) = (\mu - 1)^3 - 4 \cdot \epsilon.
\]

Hence eigenvalues of perturbed \(A \) are \(1 + O(\sqrt{\epsilon}) \).

In general, if index of eigenvalue (dimension of largest Jordan block) is \(k \), then an \(O(\epsilon) \) perturbation to \(A \) can lead to \(O(\sqrt{\epsilon}) \) change in eigenvalue. Simple eigenvalue case corresponds to \(k = 1 \).

Basic algorithm: The power method

Basic idea is to generate the sequence of vectors \(A^k v_0 \) where \(v_0 \neq 0 \) – then normalize.

Most commonly used normalization: ensure that the largest component of the approximation is equal to one.

The Power Method

1. Choose a nonzero initial vector \(v^{(0)} \).
2. For \(k = 1, 2, \ldots \), until convergence, Do:
3. \(v^{(k)} = \frac{1}{\alpha_k} Av^{(k-1)} \) where
4. \(\alpha_k = \text{argmax}_{i=1,\ldots,n} |(Av^{(k-1)})_i| \)
5. EndDo

\[
\text{argmax}_{i=1,\ldots,n} |x_i| \equiv \text{the component } x_i \text{ with largest modulus}
\]
Convergence of the power method

Theorem: Assume there is one eigenvalue λ_1 of A, s.t. $|\lambda_1| > |\lambda_j|$, for $j \neq i$, and that λ_1 is semi-simple. Then either the initial vector $v^{(0)}$ has no component in $\text{Null} (A - \lambda_1 I)$ or $v^{(k)}$ converges to an eigenvector associated with λ_1 and $\alpha_k \to \lambda_1$.

Proof in the diagonalizable case.

\triangleright $v^{(k)}$ is = vector $A^k v^{(0)}$ normalized by a certain scalar $\tilde{\alpha}_k$ in such a way that its largest component is 1.

\triangleright Decompose initial vector $v^{(0)}$ in the eigenbasis as:

$v^{(0)} = \sum_{i=1}^{n} \gamma_i u_i$

Each u_i is an eigenvector associated with λ_i.

\triangleright Note that $A^k u_i = \lambda_i^k u_i$

$v^{(k)} = \frac{1}{\text{scaling}} \times \sum_{i=1}^{n} \lambda_i^k \gamma_i u_i$

$v^{(k)} = \frac{1}{\text{scaling}} \times [\lambda_1^k \gamma_1 u_1 + \sum_{i=2}^{n} \lambda_i^k \gamma_i u_i]$

\triangleright Second term inside bracket converges to zero. QED

Proof suggests that the convergence factor is given by

$\rho_D = \frac{|\lambda_2|}{|\lambda_1|}$

where λ_2 is the second largest eigenvalue in modulus.

Example: Consider a 'Markov Chain' matrix of size $n = 55$. Dominant eigenvalues are $\lambda = 1$ and $\lambda = -1$ \(\triangleright\) the power method applied directly to A fails. (Why?)

\triangleright We can consider instead the matrix $I + A$. The eigenvalue $\lambda = 1$ is then transformed into the (only) dominant eigenvalue $\lambda = 2$

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Norm of diff.</th>
<th>Res. norm</th>
<th>Eigenvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.639D-01</td>
<td>0.276D-01</td>
<td>1.02591636</td>
</tr>
<tr>
<td>40</td>
<td>0.129D-01</td>
<td>0.513D-01</td>
<td>1.00680780</td>
</tr>
<tr>
<td>60</td>
<td>0.192D-02</td>
<td>0.808D-03</td>
<td>1.00102145</td>
</tr>
<tr>
<td>80</td>
<td>0.280D-03</td>
<td>0.121D-03</td>
<td>1.00014720</td>
</tr>
<tr>
<td>100</td>
<td>0.400D-04</td>
<td>0.174D-04</td>
<td>1.00002078</td>
</tr>
<tr>
<td>120</td>
<td>0.562D-05</td>
<td>0.247D-05</td>
<td>1.00000289</td>
</tr>
<tr>
<td>140</td>
<td>0.781D-06</td>
<td>0.344D-06</td>
<td>1.00000040</td>
</tr>
<tr>
<td>161</td>
<td>0.973D-07</td>
<td>0.430D-07</td>
<td>1.00000005</td>
</tr>
</tbody>
</table>

The Shifted Power Method

\triangleright In previous example shifted A into $B = A + I$ before applying power method. We could also iterate with $B(\sigma) = A + \sigma I$ for any positive σ

Example: With $\sigma = 0.1$ we get the following improvement.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Norm of diff.</th>
<th>Res. norm</th>
<th>Eigenvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.273D-01</td>
<td>0.794D-02</td>
<td>1.00524001</td>
</tr>
<tr>
<td>40</td>
<td>0.729D-03</td>
<td>0.210D-03</td>
<td>1.00016755</td>
</tr>
<tr>
<td>60</td>
<td>0.183D-04</td>
<td>0.509D-05</td>
<td>1.00000446</td>
</tr>
<tr>
<td>80</td>
<td>0.437D-06</td>
<td>0.118D-06</td>
<td>1.00000011</td>
</tr>
<tr>
<td>88</td>
<td>0.971D-07</td>
<td>0.261D-07</td>
<td>1.00000002</td>
</tr>
</tbody>
</table>
Question: What is the best shift-of-origin σ to use?

Easy to answer the question when all eigenvalues are real.

Assume all eigenvalues are real and labeled decreasingly:

$$\lambda_1 > \lambda_2 \geq \lambda_2 \geq \cdots \geq \lambda_n,$$

Then: If we shift A to $A - \sigma I$:

The shift σ that yields the best convergence factor is:

$$\sigma_{opt} = \frac{\lambda_2 + \lambda_n}{2}$$

Observation: The eigenvectors of A and A^{-1} are identical.

Idea: use the power method on A^{-1}.

Will compute the eigenvalues closest to zero.

Shift-and-invert Use power method on $(A - \sigma I)^{-1}$.

will compute eigenvalues closest to σ.

Rayleigh-Quotient Iteration: use $\sigma = \frac{v^T A v}{v^T v}$ (best approximation to λ given v).

Advantages: fast convergence in general.

Drawbacks: need to factor A (or $A - \sigma I$) into LU.