Inner products and Norms

Inner product of 2 vectors

- Inner product of 2 vectors x and y in \mathbb{R}^n:
 $$x_1y_1 + x_2y_2 + \cdots + x_ny_n$$

Notation: (x,y) or $y^T x$

- For complex vectors $(x,y) = x_1\bar{y}_1 + x_2\bar{y}_2 + \cdots + x_n\bar{y}_n$ in \mathbb{C}^n

Note: $(x,y) = y^H x$

Properties of Inner Product:

- $(x,y) = (y,x)$. [Symmetry]
- $(\alpha x + \beta y, z) = \alpha (x, z) + \beta (y, z)$ [Linearity]
- $(x,x) \geq 0$ is always real and non-negative. [Positive definiteness]
- $(x,x) = 0$ iff $x = 0$ (for finite dimensional spaces). [Positive definiteness]
- Given $A \in \mathbb{C}^{m \times n}$ then $(Ax,y) = (x,A^Hy) \forall x \in \mathbb{C}^n, \forall y \in \mathbb{C}^m$

Vector norms

Norms are needed to measure lengths of vectors and closeness of two vectors. Examples of use: Estimate convergence rate of an iterative method; Estimate the error of an approximation to a given solution; ...

- A vector norm on a vector space X is a real-valued function on X, which satisfies the following three conditions:
 1. $\|x\| \geq 0$, $\forall x \in X$, and $\|x\| = 0$ iff $x = 0$.
 2. $\|\alpha x\| = |\alpha|\|x\|$, $\forall x \in X$, $\forall \alpha \in \mathbb{C}$.
 3. $\|x + y\| \leq \|x\| + \|y\|$, $\forall x, y \in X$.

- Third property is called the triangle inequality.

Important example: Euclidean norm on $X = \mathbb{C}^n$,

$$\|x\|_2 = (x,x)^{1/2} = \sqrt{|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2}$$

- Show that when Q is orthogonal then $\|Qx\|_2 = \|x\|_2$
- Most common vector norms in numerical linear algebra: special cases of the H"older norms (for $p \geq 1$):
 $$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p \right)^{1/p}$$

- Find out (bbl search) how to show that these are indeed norms for any $p \geq 1$ (Not easy for 3rd requirement!)
Consider the metric
\[\|x\|_p = \max_{i=1}^{n} |x_i| \]

- Defines a norm denoted by \(\|\cdot\|_\infty \).
- The cases \(p = 1, p = 2, \) and \(p = \infty \) lead to the most important norms \(\|\cdot\|_p \) in practice. These are:

\[
\|x\|_1 = |x_1| + |x_2| + \cdots + |x_n|, \\
\|x\|_2 = \left(|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2 \right)^{1/2}, \\
\|x\|_\infty = \max_{i=1,\ldots,n} |x_i|.
\]

Property: The limit of \(\|x\|_p \) when \(p \to \infty \) exists:
\[
\lim_{p \to \infty} \|x\|_p = \max_{i=1}^{n} |x_i|
\]

The Cauchy-Schwartz inequality (important) is:
\[|(x, y)| \leq \|x\|_2 \|y\|_2. \]

- When do you have equality in the above relation?
- Expand \((x + y, x + y) \). What does the Cauchy-Schwarz inequality imply?
- The Hölder inequality (less important for \(p \neq 2 \)) is:
\[|(x, y)| \leq \|x\|_p \|y\|_q, \text{ with } \frac{1}{p} + \frac{1}{q} = 1 \]

Second triangle inequality:
\[\|x - y\| \leq \|x\| + \|y\|. \]

Consider the metric \(d(x, y) = \max_{i=1,\ldots,n} |x_i - y_i| \). Show that any norm in \(\mathbb{R}^n \) is a continuous function with respect to this metric.

Equivalence of norms:

In finite dimensional spaces (\(\mathbb{R}^n, \mathbb{C}^n, \ldots \)) all norms are ‘equivalent’: if \(\phi_1 \) and \(\phi_2 \) are two norms then there exists positive constants \(\alpha, \beta \) such that,
\[\beta \phi_2(x) \leq \phi_1(x) \leq \alpha \phi_2(x) \]

- How can you prove this result? [Hint: Show for \(\phi_2 = \|\cdot\|_\infty \)]
- We can bound one norm in terms of any other norm.
- Show that for any \(x \):
\[\frac{1}{\sqrt{n}} \|x\|_1 \leq \|x\|_2 \leq \|x\|_1 \]

What are the "unit balls" \(B_p = \{ x \mid \|x\|_p \leq 1 \} \) associated with the norms \(\|\cdot\|_p \) for \(p = 1, 2, \infty \), in \(\mathbb{R}^2 \)?
Convergence of vector sequences

A sequence of vectors \(x^{(k)} \), \(k = 1, \ldots, \infty \) converges to a vector \(x \) with respect to the norm \(\| \| \) if, by definition,
\[
\lim_{k \to \infty} \| x^{(k)} - x \| = 0
\]

Important point: because all norms in \(\mathbb{R}^n \) are equivalent, the convergence of \(x^{(k)} \) w.r.t. a given norm implies convergence w.r.t. any other norm.

Notation:
\[
\lim_{k \to \infty} x^{(k)} = x
\]

Example: The sequence
\[
x^{(k)} = \begin{pmatrix}
1 + 1/k \\
k \\
k + \log_2 k \\
1/k
\end{pmatrix}
\]
converges to
\[
x = \begin{pmatrix}
1 \\
1 \\
0
\end{pmatrix}
\]

Note: Convergence of \(x^{(k)} \) to \(x \) is the same as the convergence of each individual component \(x^{(k)}_i \) of \(x^{(k)} \) to the corresponding component \(x_i \) of \(x \).

Matrix norms

Can define matrix norms by considering \(m \times n \) matrices as vectors in \(\mathbb{R}^{mn} \). These norms satisfy the usual properties of vector norms, i.e.,

1. \(\| A \| \geq 0, \forall A \in \mathbb{C}^{m \times n}, \text{ and } \| A \| = 0 \text{ iff } A = 0 \)
2. \(\| \alpha A \| = |\alpha| \| A \|, \forall A \in \mathbb{C}^{m \times n}, \forall \alpha \in \mathbb{C} \)
3. \(\| A + B \| \leq \| A \| + \| B \|, \forall A, B \in \mathbb{C}^{m \times n} \).

However, these will lack (in general) the right properties for composition of operators (product of matrices).

The case of \(\| \cdot \|_2 \) yields the Frobenius norm of matrices.

Given a matrix \(A \) in \(\mathbb{C}^{m \times n} \), define the set of matrix norms
\[
\| A \|_p = \max_{x \in \mathbb{C}^n, \| x \|_p = 1} \| Ax \|_p.
\]

These norms satisfy the usual properties of vector norms (see previous page).

The matrix norm \(\| \cdot \|_p \) is induced by the vector norm \(\| \cdot \|_p \).

Again, important cases are for \(p = 1, 2, \infty \).

Show that
\[
\| A \|_p = \max_{x \in \mathbb{C}^n, \| x \|_p = 1} \| Ax \|_p.
\]
Consistency / sub-multiplicativity of matrix norms

- A fundamental property of matrix norms is consistency
 \[\|AB\|_p \leq \|A\|_p \|B\|_p. \]

[Also termed “sub-multiplicativity”]
- Consequence: (for square matrices) \(\|A^k\|_p \leq \|A\|_p^k \)
- \(A^k \) converges to zero if any of its \(p \)-norms is \(<1\)

[Note: sufficient but not necessary condition]

Frobenius norms of matrices

- The Frobenius norm of a matrix is defined by
 \[\|A\|_F = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2 \right)^{1/2}. \]

- Same as the 2-norm of the column vector in \(\mathbb{C}^{mn} \) consisting of all the columns (respectively rows) of \(A \).
- This norm is also consistent [but not induced from a vector norm]

Expressions of standard matrix norms

- Recall the notation: (for square \(n \times n \) matrices)
 \[\rho(A) = \max |\lambda_i(A)|; \quad Tr(A) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i(A) \]

where \(\lambda_i(A), i = 1, 2, \ldots, n \) are all eigenvalues of \(A \)

- \(\|A\|_1 = \max_{j=1,...,n} \sum_{i=1}^{m} |a_{ij}| \),
- \(\|A\|_\infty = \max_{i=1,...,m} \sum_{j=1}^{n} |a_{ij}| \),
- \(\|A\|_2 = \left(\rho(A^HA) \right)^{1/2} = \left(\rho(AA^H) \right)^{1/2} \),
- \(\|A\|_F = \left(Tr(A^HA) \right)^{1/2} = \left(Tr(AA^H) \right)^{1/2} \).
Compute the p-norm for $p = 1, 2, \infty, F$ for the matrix $A = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$.

Show that $\rho(A) \leq \|A\|$ for any matrix norm.

Is $\rho(A)$ a norm?

1. $\rho(A) = \|A\|_2$ when A is Hermitian ($A^H = A$). True for this particular case...

2. ... However, not true in general. For $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, we have $\rho(A) = 0$ while $A \neq 0$. Also, triangle inequality not satisfied for the pair A, and $B = A^T$. Indeed, $\rho(A + B) = 1$ while $\rho(A) + \rho(B) = 0$.

Singular values and matrix norms

- Let $A \in \mathbb{R}^{m \times n}$ or $A \in \mathbb{C}^{m \times n}$
- Eigenvalues of $A^H A$ and $A A^H$ are real ≥ 0.
- Show this.
- Let $\sigma_i = \sqrt{\lambda_i(A^H A)}$ if $n \leq m$
- $\sigma_i = \sqrt{\lambda_i(A A^H)}$ if $m < n$
- The σ_i’s are called singular values of A.
- Always sorted decreasingly: $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \cdots \sigma_k \geq \cdots$
- We will see a lot more on singular values later

A few properties of the 2-norm and the F-norm

- Let $A = uv^T$. Then $\|A\|_2 = \|u\|_2\|v\|_2$
- Prove this result
- In this case $\|A\|_F = ?$

For any $A \in \mathbb{C}^{m \times n}$ and unitary matrix $Q \in \mathbb{C}^{m \times m}$ we have

$\|QA\|_2 = \|A\|_2; \quad \|QA\|_F = \|A\|_F.$

- Show that the result is true for any orthogonal matrix Q (Q has orthonomal columns), i.e., when $Q \in \mathbb{C}^{p \times m}$ with $p > m$
- Let $Q \in \mathbb{C}^{n \times n}$. Do we have $\|AQ\|_2 = \|A\|_2$? $\|AQ\|_F = \|A\|_F$? What if $Q \in \mathbb{C}^{n \times p}$, with $p < n$?