Least-Squares Systems and The QR factorization

- Orthogonality
- Least-squares systems.
- The Gram-Schmidt and Modified Gram-Schmidt processes.
- The Householder QR and the Givens QR.

Orthogonality

1. Two vectors u and v are orthogonal if $(u, v) = 0$.
2. A system of vectors $\{v_1, \ldots, v_n\}$ is orthogonal if $(v_i, v_j) = 0$ for $i \neq j$; and orthonormal if $(v_i, v_j) = \delta_{ij}$.
3. A matrix is orthogonal if its columns are orthonormal.

Notation: $V = [v_1, \ldots, v_n] = $ matrix with column-vectors v_1, \ldots, v_n.

Orthogonality is essential in understanding and solving least-squares problems.

Least-Squares systems

- Given: an $m \times n$ matrix $n < m$. Problem: find x which minimizes:

$$\|b - Ax\|_2$$

- Good illustration: Data fitting.

Typical problem of data fitting: We seek an unknown function as a linear combination ϕ of n known functions ϕ_i (e.g. polynomials, trig. functions). Experimental data (not accurate) provides measures β_1, \ldots, β_m of this unknown function at points t_1, \ldots, t_m. Problem: find the 'best' possible approximation ϕ to this data.

$$\phi(t) = \sum_{i=1}^{n} \xi_i \phi_i(t) \ , \ s.t. \ \phi(t_j) \approx \beta_j, j = 1, \ldots, m$$

Question: Close in what sense?

- Least-squares approximation: Find ϕ such that

$$\phi(t) = \sum_{i=1}^{n} \xi_i \phi_i(t), \ & \sum_{j=1}^{m} |\phi(t_j) - \beta_j|^2 = \text{Min}$$

- In linear algebra terms: find 'best' approximation to a vector b from linear combinations of vectors $f_i, i = 1, \ldots, n$, where

$$b = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{pmatrix}, \ f_i = \begin{pmatrix} \phi_i(t_1) \\ \phi_i(t_2) \\ \vdots \\ \phi_i(t_m) \end{pmatrix}$$
We want to find $x = \{\xi_i\}_{i=1,\ldots,n}$ such that
\[\left\| \sum_{i=1}^{n} \xi_i f_i - b \right\|_2 \]
Minimum
Define
\[F = [f_1, f_2, \ldots, f_n], \quad x = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix} \]
We want to find x to minimize $\|b - Fx\|_2$
This is a Least-squares linear system: F is $m \times n$, with $m \geq n$.

Formulate the least-squares system for the problem of finding the polynomial of degree 2 that approximates a function f which satisfies $f(-1) = -1; f(0) = 1; f(1) = 2; f(2) = 0$

Theorem. The vector x^* minimizes $\psi(x) = \|b - Fx\|_2^2$ if and only if it is the solution of the normal equations:
\[FTFx = Ft \]

Proof: Expand out the formula for $\psi(x^* + \delta x)$:
\[\psi(x^* + \delta x) = ((b - Fx^*) - F\delta x)^T((b - Fx^*) - F\delta x) \]
\[= \psi(x^*) - 2(F\delta x)^T(b - Fx^*) + (F\delta x)^T(F\delta x) \]
\[= \psi(x^*) - 2(\delta x)^T(F^T(b - Fx^*)) + (F\delta x)^T(F\delta x) \]
\[\leq \psi(x^*) \quad \text{always positive} \]
Can see that $\psi(x^* + \delta x) \geq \psi(x^*)$ for any δx, iff the boxed quantity [the gradient vector] is zero. Q.E.D.

Solution: $\phi_1(t) = 1; \phi_2(t) = t; \phi_2(t) = t^2$
- Evaluate the ϕ_i’s at points $t_1 = -1; t_2 = 0; t_3 = 1; t_4 = 2$:
\[f_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad f_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 4 \end{pmatrix}, \quad f_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \]
- So the coefficients ξ_1, ξ_2, ξ_3 of the polynomial $\xi_1 + \xi_2 t + \xi_3 t^2$
are the solution of the least-squares problem $\min \|b - Fx\|$ where:
\[F = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix}, \quad b = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \]

Illustration of theorem: x^* is the best approximation to the vector b from the subspace $\text{span}\{F\}$ if and only if $b - Fx^*$ is \perp to the whole subspace $\text{span}\{F\}$. This in turn is equivalent to $F^T(b - Fx^*) = 0$ ➤ Normal equations.
1) Approximations by polynomials of degree one:

- \(\phi_1(t) = 1, \phi_2(t) = t \).
- \(F^T F = \begin{pmatrix} 5.0 & 0 \\ 0 & 2.5 \end{pmatrix} \)
- \(F^T b = \begin{pmatrix} 0.9 \\ -0.15 \end{pmatrix} \)

- Best approximation is \(\phi(t) = 0.18 - 0.06t \).

2) Approximation by polynomials of degree 2:

- \(\phi_1(t) = 1, \phi_2(t) = t, \phi_3(t) = t^2 \).
- Best polynomial found:

\[
0.3085714285 - 0.06 \times t - 0.2571428571 \times t^2
\]

Problem with Normal Equations

- Condition number is high: if \(A \) is square and non-singular, then

\[
\kappa_2(A) = \|A\|_2 \cdot \|A^{-1}\|_2 = \sigma_{\text{max}}/\sigma_{\text{min}}
\]

\[
\kappa_2(A^T A) = \|A^T A\|_2 \cdot \|(A^T A)^{-1}\|_2 = (\sigma_{\text{max}}/\sigma_{\text{min}})^2
\]

- Example: Let \(A = \begin{pmatrix} 1 & 1 & -\epsilon \\ \epsilon & 0 & 1 \\ 0 & \epsilon & 1 \end{pmatrix} \).

- Then \(\kappa(A) \approx \sqrt{2}/\epsilon \), but \(\kappa(A^T A) \approx 2\epsilon^{-2} \).

- \(fl(A^T A) = fl \begin{pmatrix} 2 + \epsilon^2 & 1 & 0 \\ 1 & 1 + \epsilon^2 & 0 \\ 0 & 0 & 1 + \epsilon^2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \)

is singular to working precision (if \(\epsilon < u \)).
Finding an orthonormal basis of a subspace

Goal: Find vector in \(\text{span}(X) \) closest to \(b \).

Much easier with an orthonormal basis for \(\text{span}(X) \).

Problem: Given \(X = [x_1, \ldots, x_n] \), compute \(Q = [q_1, \ldots, q_n] \) which has orthonormal columns and s.t. \(\text{span}(Q) = \text{span}(X) \).

Note: each column of \(X \) must be a linear combination of certain columns of \(Q \).

We will find \(Q \) so that \(x_j \) (\(j \) column of \(X \)) is a linear combination of the first \(j \) columns of \(Q \).

\[X = QR \]

\(R \) is upper triangular, \(Q \) is orthogonal. This is called the QR factorization of \(X \).

Another decomposition:
A matrix \(X \), with linearly independent columns, is the product of an orthogonal matrix \(Q \) and a upper triangular matrix \(R \).

ALGORITHM: 1. Classical Gram-Schmidt

1. For \(j = 1, \ldots, n \) Do:
2. Set \(\hat{q} := x_j \)
3. Compute \(r_{ij} := (\hat{q}, q_i) \), for \(i = 1, \ldots, j - 1 \)
4. For \(i = 1, \ldots, j - 1 \) Do:
5. Compute \(\hat{q} := \hat{q} - r_{ij}q_i \)
6. EndDo
7. Compute \(r_{jj} := \|\hat{q}\|_2 \),
8. If \(r_{jj} = 0 \) then Stop, else \(q_j := \hat{q}/r_{jj} \)
9. EndDo

All \(n \) steps can be completed iff \(x_1, x_2, \ldots, x_n \) are linearly independent. \(\square \) Prove this result.
The operations in lines 4 and 5 can be written as
\[\tilde{q} := \text{ORTH}(\hat{q}, q_i) \]
where \(\text{ORTH}(x, q) \) denotes the operation of orthogonalizing a vector \(x \) against a unit vector \(q \).

Result of \(z = \text{ORTH}(x, q) \)

Modified Gram-Schmidt algorithm is much more stable than classical Gram-Schmidt in general. [A few examples easily show this].

Suppose MGS is applied to \(A \) yielding computed matrices \(\hat{Q} \) and \(\hat{R} \). Then there are constants \(c_i \) (depending on \((m, n) \)) such that

\[
A + E_1 = \hat{Q} \hat{R} \quad \| E_1 \|_2 \leq c_1 \| A \|_2 \\
\| \hat{Q}^T \hat{Q} - I \|_2 \leq c_2 \| A \|_2 \| \kappa_2(A) \| + O((\| A \|_2 \| \kappa_2(A) \|)^2)
\]

for a certain perturbation matrix \(E_1 \), and there exists an orthonormal matrix \(Q \) such that

\[
A + E_2 = Q \hat{R} \quad \| E_2(:,j) \|_2 \leq c_3 \| A(:,j) \|_2
\]

for a certain perturbation matrix \(E_2 \).

An equivalent version:

**ALGORITHM : 3, Modified Gram-Schmidt - 2 -

0. Set \(\hat{Q} := X \)
1. For \(i = 1, \ldots, n \) Do:
2. Compute \(r_{ii} := \| \hat{q}_i \|_2 \)
3. If \(r_{ii} = 0 \) then Stop, else \(q_i := \hat{q}_i/r_{ii} \)
4. For \(j = i + 1, \ldots, n \), Do:
5. \(r_{ij} := (\hat{q}_j, q_i) \)
6. \(\hat{q}_j := \hat{q}_j - r_{ij} q_i \)
7. EndDo
8. EndDo

Does exactly the same computation as previous algorithm, but in a different order.
Example:
Orthonormalize the system of vectors:

\[X = [x_1, x_2, x_3] = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \]

Answer:
\[q_1 = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}; \quad q_2 = x_2 - (x_2, q_1)q_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} - 1 \times \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1/2 \\ -1/2 \\ -1/2 \end{pmatrix} \]

\[\hat{q}_3 = x_3 - (x_3, q_1)q_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 4 \end{pmatrix} - 2 \times \begin{pmatrix} \frac{1}{2} \\ 1/2 \\ 1/2 \end{pmatrix} = \begin{pmatrix} 1/2 \\ -1 \\ -2 \\ 3 \end{pmatrix} \]

\[\hat{q}_3 = \hat{q}_3 - (\hat{q}_3, q_2)q_2 = \begin{pmatrix} 1/2 \\ -1/2 \\ -1/2 \\ 2.5 \end{pmatrix} - (-1) \times \begin{pmatrix} \frac{1}{2} \\ 1/2 \\ 1/2 \end{pmatrix} = \begin{pmatrix} 1/2 \\ -1/2 \\ -1/2 \\ -2.5 \end{pmatrix} \]

\[\|\hat{q}_3\|_2 = \sqrt{13} \rightarrow q_3 = \frac{\hat{q}_3}{\|\hat{q}_3\|_2} = \begin{pmatrix} 1/2 \\ -1/2 \\ -1/2 \\ 2.5 \end{pmatrix} \]

Application: another method for solving linear systems.

Ax = b
A is an \(n \times n \) nonsingular matrix. Compute its QR factorization.

Multiply both sides by \(Q^T \) to get \(Q^TQRx = Q^Tb \).

Method:

- Compute the QR factorization of \(A \), \(A = QR \).
- Solve the upper triangular system \(Rx = Q^Tb \).

Cost??
Use of the QR factorization

Problem: \(Ax \approx b \) in least-squares sense

\(A \) is an \(m \times n \) (full-rank) matrix. Let \(A = QR \)

the QR factorization of \(A \) and consider the normal equations:

\[
A^T Ax = A^T b \quad \rightarrow \quad R^T Q^T R Rx = R^T Q^T b \\
R^T Rx = R^T Q^T b \quad \rightarrow \quad Rx = Q^T b
\]

\((R^T\) is an \(n \times n \) nonsingular matrix\). Therefore,

\[
x = R^{-1} Q^T b
\]

Another derivation:

- Recall: \(\text{span}(Q) = \text{span}(A) \)
- So \(\|b - Ax\|_2^2 \) is minimum when \(b - Ax \perp \text{span}\{Q\} \)
- Therefore solution \(x \) must satisfy \(Q^T (b - Ax) = 0 \)

\[
Q^T (b - QRx) = 0 \quad \rightarrow \quad Rx = Q^T b
\]

\[
x = R^{-1}Q^Tb
\]

Method:

- Compute the QR factorization of \(A \), \(A = QR \).
- Compute the right-hand side \(f = QTb \)
- Solve the upper triangular system \(Rx = f \).
- \(x \) is the least-squares solution

As a rule it is not a good idea to form \(A^T A \) and solve the normal equations. Methods using the QR factorization are better.

\[
\text{Total cost??} \quad (\text{depends on the algorithm used to get the QR decomposition}).
\]

Using matlab find the parabola that fits the data in previous data fitting example (p. 8-10) in L.S sense [verify that the result found is correct.]

\[
\|b - Ax\|_2^2 = \|b - QRx\|^2 \\
= \|(I - QQ^T)b + Q(Q^Tb - Rx)\|^2 \\
= \|(I - QQ^T)b\|^2 + \|Q(Q^Tb - Rx)\|^2 \\
= \|(I - QQ^T)b\|^2 + \|Q^Tb - Rx\|^2
\]

Min is reached when 2nd term of r.h.s. is zero.