Householder QR

- Householder reflectors are matrices of the form
 \[P = I - 2ww^T, \]
 where \(w \) is a unit vector (a vector of 2-norm unity).

 Geometrically, \(Px \) represents a mirror image of \(x \) with respect to the hyperplane \(\text{span}\{w\}^\perp \).

A few simple properties:

- For real \(w \): \(P \) is symmetric – It is also orthogonal \((P^TP = I)\).
- In the complex case \(P = I - 2ww^H \) is Hermitian and unitary.
- \(P \) can be written as \(P = I - \beta vv^T \) with \(\beta = 2/\|v\|_2^2 \), where \(v \) is a multiple of \(w \). [storage: \(v \) and \(\beta \)]
- \(Px \) can be evaluated \(x - \beta (x^Tv) v \) (op count?)
- Similarly: \(PA = A - v^Tz \) where \(z^T = \beta * v^T * A \)

Geometrically, \(Px \) represents a mirror image of \(x \) with respect to the hyperplane \(\text{span}\{w\}^\perp \).

Problem 1: Given a vector \(x \neq 0 \), find \(w \) such that
\[(I - 2ww^T)x = \alpha e_1, \]
where \(\alpha \) is a (free) scalar.

Writing \((I - \beta vv^T)x = \alpha e_1 \) yields \(\beta(v^Tx) v = x - \alpha e_1 \).

- Desired \(w \) is a multiple of \(x - \alpha e_1 \), i.e., we can take:
 \[v = x - \alpha e_1 \]
- To determine \(\alpha \) recall that \(\| (I - 2ww^T)x \|_2 = \| x \|_2 \)
- As a result: \(|\alpha| = \| x \|_2 \), or \(\alpha = \pm \| x \|_2 \)
- Should verify that both signs work, i.e., that in both cases we indeed get \(Px = \alpha e_1 \) [exercise]

Next: we will solve a problem that will provide the basic ingredient of the Householder QR factorization.
Alternative:

Define $\sigma = \sum_{i=2}^{m} \xi_i^2$.

Always set $\hat{\xi}_1 = \xi_1 - \|x\|_2$. Update OK when $\xi_1 \leq 0$.

When $\xi_1 > 0$ compute \hat{x}_1 as:

$$\hat{x}_1 = \xi_1 - \|x\|_2 = \frac{\xi_1^2 - \|x\|_2^2}{\xi_1 + \|x\|_2} = -\sigma$$

So:

$$\hat{\xi}_1 = \begin{cases}
-\sigma / \xi_1 + \|x\|_2 & \text{if } \xi_1 > 0 \\
\xi_1 - \|x\|_2 & \text{if } \xi_1 \leq 0
\end{cases}$$

It is customary to compute a vector v such that $v_1 = 1$. So v is scaled by its first component.

If $\sigma == 0$, we get $v = [1; x(2 : m)]$ and $\beta = 0$.

Matlab function:

```matlab
function [v,bet] = house (x)
%% computes the householder vector for x
m = length(x);
v = [1 ; x(2:m)];
sigma = v(2:m)' * v(2:m);
if (sigma == 0)
bet = 0;
else
    xnrm = sqrt(x(1)^2 + sigma) ;
    if (x(1) <= 0)
v(1) = x(1) - xnrm;
    else
        v(1) = -sigma / (x(1) + xnrm) ;
    end
    bet = 2 / (1+sigma/v(1)^2);
v = v/v(1) ;
end
```

Problem 2: Generalization.

Want to transform x into $y = Px$ where first k components of x and y are the same and $y_j = 0$ for $j > k + 1$. In other words:

Problem 2: Given $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $x_1 \in \mathbb{R}^k, x_2 \in \mathbb{R}^{m-k}$, find: Householder transform $P = I - 2w_1w_1^T$ such that:

$Px = \begin{pmatrix} x_1 \\ \alpha e_1 \end{pmatrix}$ where $e_1 \in \mathbb{R}^{m-k}$.

Solution $w = \begin{pmatrix} 0 \\ \hat{w} \end{pmatrix}$, where \hat{w} is s.t. $(I - 2\hat{w}\hat{w}^T)x_2 = \alpha e_1$

This is because:

$$P = \begin{bmatrix} I & 0 \\ 0 & I - 2\hat{w}\hat{w}^T \end{bmatrix}$$

Overall Procedure:

Given an $m \times n$ matrix X, find w_1, w_2, \ldots, w_n such that

$$(I - 2w_nw_n^T) \cdots (I - 2w_2w_2^T)(I - 2w_1w_1^T)X = R$$

where $r_{ij} = 0$ for $i > j$.

First step is easy: select w_1 so that the first column of X becomes αe_1.

Second step: select w_2 so that x_2 has zeros below 2nd component.

etc.. After $k - 1$ steps: $X_k = P_{k-1} \cdots P_1X$ has the following shape:
To do: transform this matrix into one which is upper triangular up to the k-th column...

... while leaving the previous columns untouched.

\[X_k = \begin{pmatrix}
 x_{11} & x_{12} & x_{13} & \cdots & \cdots & x_{1n} \\
 x_{21} & x_{22} & x_{23} & \cdots & \cdots & x_{2n} \\
 x_{31} & \cdots & \cdots & \cdots & \cdots & x_{3n} \\
 \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
 x_{k1} & \cdots & \cdots & \cdots & \cdots & x_{kn} \\
 x_{k+1,1} & x_{k+1,2} & x_{k+1,3} & \cdots & \cdots & x_{k+1,n} \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 x_{m1} & \cdots & \cdots & \cdots & \cdots & x_{mn} \\
\end{pmatrix} \]

To leave the first $k - 1$ columns unchanged w must have zeros in positions 1 through $k - 1$.

\[P_k = I - 2w_kw_k^T, \quad w_k = \frac{v}{\|v\|_2}, \]

where the vector v can be expressed as a Householder vector for a shorter vector using the matlab function house,

\[v = \begin{pmatrix} 0 \\ \text{house}(X(k : m, k)) \end{pmatrix} \]

The result is that work is done on the $(k : m, k : n)$ submatrix.

ALGORITHM : 1. Householder QR

1. For $k = 1 : n$ do
2. \[[v, \beta] = \text{house}(X(k : m, k)) \]
3. \[X(k : m, k : n) = (I - \beta vv^T)X(k : m, k : n) \]
4. If $(k < m)$
5. \[X(k + 1 : m, k) = v(2 : m - k + 1) \]
6. end
7. end

In the end:

\[X_n = P_n P_{n-1} \ldots P_1 X = \text{upper triangular} \]

Yields the factorization:

\[X = QR \]

where: \(Q = P_1 P_2 \ldots P_n \) and \(R = X_n \)

Example:

Apply to system of vectors:

\[X = [x_1, x_2, x_3] = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & 4 \end{pmatrix} \]

Answer:

\[x_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \|x_1\|_2 = 2, \quad v_1 = \begin{pmatrix} 1 + 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad w_1 = \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 + 2 \\ 1 \\ 1 \\ 1 \end{pmatrix} \]
How to obtain Cost of Householder QR? Compare with Gram-Schmidt

\[P_1 = I - 2w_1w_1^T = \frac{1}{6} \begin{pmatrix} -3 & -3 & -3 \\ -3 & 5 & -1 \\ -3 & -1 & 5 \end{pmatrix}, \]

\[P_1X = \begin{pmatrix} -2 & -1 & -2 \\ 0 & 1/3 & -1 \\ 0 & -2/3 & 3 \end{pmatrix}, \quad \|\tilde{x}_2\|_2 = 1, \quad v_2 = \begin{pmatrix} 0 \\ 1/3 + 1 \\ -2/3 \\ -2/3 \end{pmatrix}, \quad \|\tilde{x}_2\|_2 = 1, \quad v_2 = \begin{pmatrix} 0 \\ 1/3 + 1 \\ -2/3 \\ -2/3 \end{pmatrix}, \]

\[P_2 = I - 2v_2v_2^T = \frac{1}{3} \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 2 & 2 \\ 0 & 2 & 2 & -1 \\ 0 & 2 & -1 & 2 \end{pmatrix}, \]

Next stage:

\[P_2P_1X = \begin{pmatrix} -2 & -1 & -2 \\ 0 & -1 & 1 \\ 0 & 0 & -3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 2 & 2 & -1 \end{pmatrix}, \quad v_1 = \begin{pmatrix} 0 \\ 2 & 2 & -1 \end{pmatrix}, \]

\[\tilde{x}_3 = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 3 \end{pmatrix}, \quad \|\tilde{x}_3\|_2 = \sqrt{13}, \quad v_1 = \begin{pmatrix} 0 \\ 2 & 2 & -1 \end{pmatrix}, \quad v_1 = \begin{pmatrix} 0 \\ 2 & 2 & -1 \end{pmatrix}, \]

So we end up with the factorization

\[X = P_1P_2P_3R \]

profile

End Example

MAJOR difference with Gram-Schmidt: \(Q \) is \(m \times m \) and \(R \) is \(m \times n \) (same as \(X \)). The matrix \(R \) has zeros below the \(n \)-th row. Note also: this factorization always exists.

Cost of Householder QR? Compare with Gram-Schmidt

How to obtain \(X = Q_1R_1 \) where \(Q_1 \) = same size as \(X \) and \(R_1 \) is \(n \times n \) (as in MGS)?
Answer: simply use the partitioning

\[X = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_1 \\ 0 \end{pmatrix} \rightarrow X = Q_1R_1 \]

- Referred to as the “thin” QR factorization (or “economy-size QR” factorization in Matlab)
- How to solve a least-squares problem \(Ax = b \) using the Householder factorization?
 - Answer: no need to compute \(Q_1 \). Just apply \(Q^T \) to \(b \).
 - This entails applying the successive Householder reflections to \(b \)

The rank-deficient case

- Result of Householder QR: \(Q_1 \) and \(R_1 \) such that \(Q_1R_1 = X \). In the rank-deficient case, can have \(\text{span}\{Q_1\} \neq \text{span}\{X\} \) because \(R_1 \) may be singular.
- Remedy: Householder QR with column pivoting. Result will be:

\[A\Pi = Q \begin{pmatrix} R_{11} \\ R_{12} \\ 0 \\ 0 \end{pmatrix} \]

- \(R_{11} \) is nonsingular. So \(\text{rank}(X) = \text{size of } R_{11} = \text{rank}(Q_1) \) and \(Q_1 \) and \(X \) span the same subspace.
- \(\Pi \) permutes columns of \(X \).

Algorithm: At step \(k \), active matrix is \(X(k : m, k : n) \). Swap \(k \)-th column with column of largest 2-norm in \(X(k : m, k : n) \). If all the columns have zero norm, stop.

Practical Question: How to implement this ???

Suppose you know the norms of each column of \(X \) at the start. What happens to each of the norms of \(X(2 : m, j) \) for \(j = 2, \cdots, n \)? Generalize this to step \(k \) and obtain a procedure to inexpensively compute the desired norms at each step.
Properties of the QR factorization

Consider the ‘thin’ factorization $A = QR$, (size(Q) = [m,n] = size (A)). Assume $r_{ii} > 0$, $i = 1,...,n$

1. When A is of full column rank this factorization exists and is unique.
2. It satisfies:
 \[\text{span}\{a_1, \cdots, a_k\} = \text{span}\{q_1, \cdots, q_k\}, \quad k = 1,...,n \]

3. R is identical with the Cholesky factor G^T of $A^T A$

 - When A in rank-deficient and Householder with pivoting is used, then
 \[\text{Ran}\{Q_1\} = \text{Ran}\{A\} \]

Givens Rotations

- Matrices of the form
 \[G(i, k, \theta) = \begin{pmatrix}
 1 & \cdots & 0 & \cdots & 0 & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
 0 & \cdots & c & \cdots & s & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
 0 & \cdots & -s & \cdots & c & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & \cdots & \cdots & 1
\end{pmatrix} \]

 \[
 G(i, k, \theta) = \begin{pmatrix}
 1 & \cdots & 0 & \cdots & 0 & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
 0 & \cdots & c & \cdots & s & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
 0 & \cdots & -s & \cdots & c & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & \cdots & \cdots & 1
\end{pmatrix}
\]

 - with $c = \cos \theta$ and $s = \sin \theta$

 - represents a rotation in the span of e_i and e_k.

Main idea of Givens rotations

- consider $y = Gx$ then
 \[
 y_i = c * x_i + s * x_k \\
 y_k = -s * x_i + c * x_k \\
 y_j = x_j \quad \text{for } j \neq i, k
 \]

 - Can make $y_k = 0$ by selecting
 \[
 s = x_k / t; \quad c = x_i / t; \quad t = \sqrt{x_i^2 + x_k^2}
 \]

 - This is used to introduce zeros in the first column of a matrix A
 (for example $G(m-1,m)$, $G(m-2,m-1)$ etc..$G(1,2)$).