THE URV & SINGULAR VALUE DECOMPOSITIONS

- Orthogonal subspaces;
- Orthogonal projectors; Orthogonal decomposition;
- The URV decomposition
- Introduction to the Singular Value Decomposition
- The SVD – existence and properties.
Orthogonal projectors and subspaces

Notation: Given a subspace \(\mathcal{X} \) of \(\mathbb{R}^m \) define

\[
\mathcal{X}^\perp = \{ y | y \perp x, \ \forall \ x \in \mathcal{X} \}
\]

\[\text{Let } Q = [q_1, \cdots, q_r] \text{ an orthonormal basis of } \mathcal{X}\]

How would you obtain such a basis?

\[\text{Then define orthogonal projector } P = QQ^T\]

\textbf{Properties}

(a) \(P^2 = P \) \quad (b) \((I - P)^2 = I - P \)

(c) \(\text{Ran}(P) = \mathcal{X} \) \quad (d) \(\text{Null}(P) = \mathcal{X}^\perp \)

(e) \(\text{Ran}(I - P) = \text{Null}(P) = \mathcal{X}^\perp \)

\[\text{Note that (b) means that } I - P \text{ is also a projector}\]
Proof. (a), (b) are trivial

(c): Clearly \(\text{Ran}(P) = \{x \mid x = QQ^T y, y \in \mathbb{R}^m\} \subseteq \mathcal{X} \). Any \(x \in \mathcal{X} \) is of the form \(x = Qy, y \in \mathbb{R}^m \). Take \(Px = QQ^T(Qy) = Qy = x \). Since \(x = Px \), \(x \in \text{Ran}(P) \). So \(\mathcal{X} \subseteq \text{Ran}(P) \). In the end \(\mathcal{X} = \text{Ran}(P) \).

(d): \(x \in \mathcal{X} \perp \iff (x, y) = 0, \forall y \in \mathcal{X} \iff (x, Qz) = 0, \forall z \in \mathbb{R}^r \iff (Q^Tx, z) = 0, \forall z \in \mathbb{R}^r \iff Q^Tx = 0 \iff QQ^Tx = 0 \iff Px = 0 \).

(e): Need to show inclusion both ways.
- \(x \in \text{Null}(P) \iff Px = 0 \iff (I - P)x = x \rightarrow x \in \text{Ran}(I - P) \)
- \(x \in \text{Ran}(I - P) \iff \exists y \in \mathbb{R}^m | x = (I - P)y \rightarrow Px = P(I - P)y = 0 \rightarrow x \in \text{Null}(P) \)

9-3

AB: 1.1, 2.2, 2.4; TB: 4-5; GvL 2.4, 5.4-5 – SVD
Result: Any \(x \in \mathbb{R}^m \) can be written in a unique way as

\[
x = x_1 + x_2, \quad x_1 \in X, \quad x_2 \in X^\perp
\]

Proof: Just set \(x_1 = Px, \quad x_2 = (I - P)x \)

Note:

\[
X \cap X^\perp = \{0\}
\]

Therefore:

\[
\mathbb{R}^m = X \oplus X^\perp
\]

Called the Orthogonal Decomposition
Orthogonal decomposition

In other words \(\mathbb{R}^m = \mathbf{PR}^m \oplus (\mathbf{I} - \mathbf{P})\mathbb{R}^m \) or:

\[
\mathbb{R}^m = \text{Ran}(\mathbf{P}) \oplus \text{Ran}(\mathbf{I} - \mathbf{P})
\]
or:

\[
\mathbb{R}^m = \text{Ran}(\mathbf{P}) \oplus \text{Null}(\mathbf{P})
\]
or:

\[
\mathbb{R}^m = \text{Ran}(\mathbf{P}) \oplus \text{Ran}(\mathbf{P})^\perp
\]

Can complete basis \(\{q_1, \cdots, q_r\} \) into orthonormal basis of \(\mathbb{R}^m \), \(q_{r+1}, \cdots, q_m \)

\[
\{q_{r+1}, \cdots, q_m\} = \text{basis of } \mathbf{X}^\perp. \quad \rightarrow \quad \text{dim}(\mathbf{X}^\perp) = m - r.
\]
Four fundamental subspaces - URV decomposition

Let \(A \in \mathbb{R}^{m \times n} \) and consider \(\text{Ran}(A) \perp \)

Property 1: \(\text{Ran}(A) \perp = \text{Null}(A^T) \)

Proof: \(x \in \text{Ran}(A) \perp \) iff \((Ay, x) = 0 \) for all \(y \) iff \((y, A^T x) = 0 \) for all \(y \) ...

Property 2: \(\text{Ran}(A^T) = \text{Null}(A) \perp \)

Take \(X = \text{Ran}(A) \) in orthogonal decomposition.

Result:

\[
\mathbb{R}^m = \text{Ran}(A) \oplus \text{Null}(A^T) \\
\mathbb{R}^n = \text{Ran}(A^T) \oplus \text{Null}(A)
\]

4 fundamental subspaces

\[
\text{Ran}(A) \quad \text{Null}(A^T) \\
\text{Ran}(A^T) \quad \text{Null}(A)
\]
Express the above with bases for \mathbb{R}^m:

\[
\begin{bmatrix}
 u_1, u_2, \cdots, u_r, u_{r+1}, u_{r+2}, \cdots, u_m \\
 \text{Ran}(A) \\
 \text{Null}(A^T)
\end{bmatrix}
\]

and for \mathbb{R}^n:

\[
\begin{bmatrix}
 v_1, v_2, \cdots, v_r, v_{r+1}, v_{r+2}, \cdots, v_n \\
 \text{Ran}(A^T) \\
 \text{Null}(A)
\end{bmatrix}
\]

Observe $u_i^T A v_j = 0$ for $i > r$ or $j > r$. Therefore

\[
U^T A V = R = \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix}_{m \times n} \quad C \in \mathbb{R}^{r \times r} \quad \rightarrow
\]

\[
A = U R V^T
\]

General class of URV decompositions
Far from unique.

Show how you can get a decomposition in which C is lower (or upper) triangular, from the above factorization.

Can select decomposition so that R is upper triangular \rightarrow URV decomposition.

Can select decomposition so that R is lower triangular \rightarrow ULV decomposition.

SVD = special case of URV where R = diagonal

How can you get the ULV decomposition by using only the Householder QR factorization (possibly with pivoting)? [Hint: you must use Householder twice]
The Singular Value Decomposition (SVD)

Theorem For any matrix \(A \in \mathbb{R}^{m \times n} \) there exist unitary matrices \(U \in \mathbb{R}^{m \times m} \) and \(V \in \mathbb{R}^{n \times n} \) such that

\[
A = U \Sigma V^T
\]

where \(\Sigma \) is a diagonal matrix with entries \(\sigma_{ii} \geq 0 \).

\[
\sigma_{11} \geq \sigma_{22} \geq \cdots \sigma_{pp} \geq 0 \text{ with } p = \min(n, m)
\]

The \(\sigma_{ii} \)'s are the singular values. Notation change \(\sigma_{ii} \rightarrow \sigma_i \)

Proof: Let \(\sigma_1 = \|A\|_2 = \max_{x, \|x\|_2 = 1} \|Ax\|_2 \). There exists a pair of unit vectors \(v_1, u_1 \) such that

\[
Av_1 = \sigma_1 u_1
\]
Complete v_1 into an orthonormal basis of \mathbb{R}^n

$$V \equiv [v_1, V_2] = n \times n \text{ unitary}$$

Complete u_1 into an orthonormal basis of \mathbb{R}^m

$$U \equiv [u_1, U_2] = m \times m \text{ unitary}$$

Define U, V as single Householder reflectors.

Then, it is easy to show that

$$AV = U \times \begin{pmatrix} \sigma_1 & w^T \\ 0 & B \end{pmatrix} \rightarrow U^T AV = \begin{pmatrix} \sigma_1 & w^T \\ 0 & B \end{pmatrix} \equiv A_1$$
Observe that
\[
\| A_1 \left(\begin{array}{c} \sigma_1 \\ w \end{array} \right) \|_2 \geq \sigma_1^2 + \| w \|^2 = \sqrt{\sigma_1^2 + \| w \|^2} \left\| \sigma_1 \right\|_2
\]

This shows that \(w \) must be zero [why?]

Complete the proof by an induction argument.
Case 1:

\[A = U \Sigma V^T \]

Case 2:

\[A = U \Sigma V^T \]

AB: 1.1, 2.2, 2.4; TB: 4-5; GvL 2.4, 5.4-5 – SVD
Consider the Case-1. It can be rewritten as

\[A = [U_1 U_2] \begin{pmatrix} \Sigma_1 \\ 0 \end{pmatrix} V^T \]

Which gives:

\[A = U_1 \Sigma_1 V^T \]

where \(U_1 \) is \(m \times n \) (same shape as \(A \)), and \(\Sigma_1 \) and \(V \) are \(n \times n \)

Referred to as the “thin” SVD. Important in practice.

How can you obtain the thin SVD from the QR factorization of \(A \) and the SVD of an \(n \times n \) matrix?
A few properties. Assume that
\[\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0 \text{ and } \sigma_{r+1} = \cdots = \sigma_p = 0 \]

Then:

- \(\text{rank}(A) = r = \text{number of nonzero singular values} \).
- \(\text{Ran}(A) = \text{span}\{u_1, u_2, \ldots, u_r\} \)
- \(\text{Null}(A^T) = \text{span}\{u_{r+1}, u_{r+2}, \ldots, u_m\} \)
- \(\text{Ran}(A^T) = \text{span}\{v_1, v_2, \ldots, v_r\} \)
- \(\text{Null}(A) = \text{span}\{v_{r+1}, v_{r+2}, \ldots, v_n\} \)
Properties of the SVD (continued)

- The matrix A admits the SVD expansion:

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T$$

- $\|A\|_2 = \sigma_1 =$ largest singular value

- $\|A\|_F = \left(\sum_{i=1}^{r} \sigma_i^2\right)^{1/2}$

- When A is an $n \times n$ nonsingular matrix then $\|A^{-1}\|_2 = 1/\sigma_n$
Theorem

Let $k < r$ and

$$A_k = \sum_{i=1}^{k} \sigma_i u_i v_i^T$$

then

$$\min_{\text{rank}(B)=k} \| A - B \|_2 = \| A - A_k \|_2 = \sigma_{k+1}$$
Proof: First: \(\| A - B \|_2 \geq \sigma_{k+1} \), for any rank-\(k \) matrix \(B \).

Consider \(\mathcal{X} = \text{span}\{v_1, v_2, \ldots, v_{k+1}\} \). Note:

\[
dim(\text{Null}(B)) = n - k \rightarrow \text{Null}(B) \cap \mathcal{X} \neq \{0\}
\]

[Why?]

Let \(x_0 \in \text{Null}(B) \cap \mathcal{X}, \ x_0 \neq 0 \). Write \(x_0 = V y \). Then

\[
\|(A - B)x_0\|_2 = \|Ax_0\|_2 = \|U\Sigma V^T V y\|_2 = \|\Sigma y\|_2
\]

But \(\|\Sigma y\|_2 \geq \sigma_{k+1}\|x_0\|_2 \) (Show this). \(\rightarrow \|A - B\|_2 \geq \sigma_{k+1} \)

Second: take \(B = A_k \). Achieves the min. \(\square \)
Right and Left Singular vectors:

\[Av_i = \sigma_i u_i \]
\[A^T u_j = \sigma_j v_j \]

- Consequence: \[A^T A v_i = \sigma_i^2 v_i \] and \[A A^T u_i = \sigma_i^2 u_i \]

- Right singular vectors (\(v_i \)'s) are eigenvectors of \(A^T A \)

- Left singular vectors (\(u_i \)'s) are eigenvectors of \(A A^T \)

- Possible to get the SVD from eigenvectors of \(A A^T \) and \(A^T A \) – but: difficulties due to non-uniqueness of the SVD
Define the $r \times r$ matrix

$$\Sigma_1 = \text{diag}(\sigma_1, \ldots, \sigma_r)$$

Let $A \in \mathbb{R}^{m \times n}$ and consider $A^T A$ ($\in \mathbb{R}^{n \times n}$):

$$A^T A = V\Sigma^T \Sigma V^T \rightarrow A^T A = V \underbrace{\begin{pmatrix} \Sigma_1^2 & 0 \\ 0 & 0 \end{pmatrix}}_{n \times n} V^T$$

This gives the spectral decomposition of $A^T A$.

AB: 1.1. 2.2. 2.4; TB: 4-5; GvL 2.4, 5.4-5 – SVD
Similarly, U gives the eigenvectors of AA^T.

\[
AA^T = U \begin{pmatrix}
\Sigma^2 & 0 \\
0 & 0
\end{pmatrix} U^T
\]

Important:

$A^T A = V D_1 V^T$ and $AA^T = U D_2 U^T$ give the SVD factors U, V up to signs!