What is computer security?
- Keep "bad things" from happening
- Distinguished by presence of an adversary

Two sides of security
- Defenders / white-hats / good guys
- Attackers / black-hats / bad guys
- Each side's strategy depends on the other
- In some ways like a game

Common security threats
- Spoofing
- Tampering
- Repudiation
- Information disclosure
- Denial of service
- Elevation of privilege

Threat modeling
- What are the relevant parts of your system?
- What threats are possible?
- How can you stop the threats?

Course areas
- Low-level software security
- OS interaction security
- Web software security
- Using cryptography
- User identities and usability

Outline
- Big-Picture Introduction
- Breakout-group Introductions
- Course Logistics
Say hello to your random group

- Rename for how you'd like others to refer to you
- Video appreciated if possible
- Ice-breaker question: suppose we were able to have a potluck dinner after class. What food or drink that you like to cook and/or eat would you want to bring?
- Saugata and I will circulate separately

Outline

- Big-Picture Introduction
- Breakout-group Introductions
- Course Logistics

Instructor information

- Stephen McCamant
- Office: 4-225E Keller (but I'm not there)
- Office hours: TBA, via Zoom
- Email: mccamant@cs.umn.edu

Teaching assistant

- Saugata Paul
- Office hours: TBA, via Zoom

Prerequisites

- Software design and development (3081)
- C, machine code, and compilation
 - Eg. 2021, transitive for 3081

Reading materials

- Posted on the course web site
- Download, perhaps with library proxy
- Chosen to complement lecture discussions
- Comprehension questions on Canvas

Optional book 1

Provides more detail on threat modeling, but no assigned readings

Optional book 2

Source for several readings, but chapters are free online
Evaluation components

10% Lab participation (12/15)
5% Lecture/discussion attendance (24/28)
5% Online lecture/reading Qs (best scores)
20% Problem sets
60% Projects

Online lecture/reading questions

- Auto-graded questions to check your understanding
- Due within a week from the material posting
- Can repeat to improve your score

Problem sets

- Four sets, roughly by topic areas
- Done individually
- Mostly thinking and writing, not much programming
- Submit in PDF, via Canvas
- 75% technical correctness, 25% writing

Exams?

- No exams this semester
- Hard to do well remotely
- No assignments during final exam period

Projects

- Single most important and time-consuming part of course
- Each may cover:
 - Modeling possible threats against a system
 - Finding bugs and testing attacks
 - 4-5 page writeup of your results, with revision
 - Fixing the bugs
- Mostly individual, 50% of grade is writing

Four projects

- Proj 1: memory safety vulnerabilities
- Proj 2: OS interaction vulnerabilities
- Proj 3: web site vulnerabilities
- Proj 4: design project, no implementation

Project activity breakdown

- Proj 1: attacks, revision, and fixes (30%)
- Proj 2: attacks and fixes (20%)
- Proj 3: attacks, revision, and fixes (30%)
- Proj 4: revision (20%)

Writing intensive

- A major focus is effectively communicating about security
- Writing techniques will be a periodic topic in lecture section
- Lots of feedback (and grading) about writing assignments
 - Projects 1 and 3 include revision in response to feedback
Project 1 tentative schedule

- Description and buggy code posted: Tuesday 9/15
- Threat modeling (46%) and attacks (18%) report due: Friday 9/25
- Feedback on report returned: Friday 10/2
- Code fixes (18%) and revised report (18%) due: Friday 10/9

Late assignments

- Problem sets: half credit for up to 48 hours late
- Projects: may request an extension (from Friday night to Monday night) for one project submission

Collaboration

- Be careful about bugs: "no spoilers"
- OK to discuss general concepts
- OK to help with side tech issues
- Sharing code or written answers is never OK

External sources

- Many assignments will allow or recommend outside (library, Internet) sources
- But you must appropriately acknowledge any outside sources you use
- Failure to do so is plagiarism

Security ethics

- Don’t use techniques discussed in class to attack the security of other people’s computers!
- If we find you do, you will fail, along with other applicable penalties

Academic misconduct generally

- Don’t cheat, plagiarize, help others cheat, etc.
- Minimum penalty: 0 on assignment, report to OCS
- More serious: F in course, other OCS penalties

Course web site

- Department web site will be under csci4271
- Also linked from my home page "mccamant"

On Canvas

- Zoom links (how you got here, I hope)
- Recorded asynchronous lectures
- Online lecture/reading questions
- Assignment submissions
- Viewing grades
Mostly Piazza

- **Online Q&A**
 - Can be anonymous and/or private
 - Both students and staff can answer
- **Course announcements**
 - Can control delivery preferences, defaults to email
 - Reserve email for personal, administrative issues

Asynchronous online lectures

- **Motivation:** some topics benefit from discussion, others from being able to rewind
- **Pre-recording of me talking with slides, sometimes demos**
- **Like readings, more in-depth but non-interactive**
- **Watch and answer online questions within one week**
- **On Canvas/Kultura with hand-checked subtitles, downloadable**

Synchronous lecture/discussions

- **Always online via Zoom, TuTh 4-5:15pm**
- **Mixture of lecture and discussions**
 - Come prepared to participate
 - Lecture slides posted, but not recorded

Synchronous lab sections

- **Hands-on and collaborative practice with code and tools**
- **Online, may later be available in person**
- **Graded on participation, meaning:**
 - Be present and working on 4271 material
 - If you have a question, that interaction counts
 - No questions? Show off your progress

All-online labs

- **At least first 2 and last 3 weeks, starting tomorrow**
- **Sections further divided by last name**
 - Zoom rooms hosted by me and Saugata, alternating
- **Online labs will always be available**

Socially-distanced in-person labs

- **Offered starting 9/23, fingers crossed**
 - Depending on campus opening, staff health, space availability, etc.
- **Planned for 1-250 Keller Hall in a reduced capacity layout**
- **Saugata and I will alternate by week between in-person and Zoom**

In-person lab safety

- **Mask wearing and 6-foot distancing required**
- **No professional cleaning between sections, wipes available**
- **No plexiglass, screen sharing still needs to be electronic**
- **We’ve decided this is worth the risk for us, but you need to make your own decision**

Tomorrow’s lab

- **No security content, just practice with online collaboration**
 - In random small groups
- **Vole and SSH access to CSE Labs (review)**
- **Read-only screen sharing via Zoom**
- **Interactive terminal sharing via tmate**
- **Off-campus access to library materials**
4271 vs. 5271

- Designed so you can take either or both
 - 5271 easier but still worthwhile after 4271
- 4271 has more of: threat modeling, software engineering, writing support
- 5271 has more of: research perspectives, novel/difficult attacks