
CSci 4271W
Development of Secure Software Systems

Day 2: Memory Safety Introduction
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Memory safety and security

Stack buffer overflow

Reversing the stack

Other safety problems

A large class of problems

First up, a common class of vulnerabilities in C/C++
programs

Exist because these languages do not enforce safe
use of memory

An attacker who controls program input can make
the program do what they want

Language shifts burden to code, code is incorrect

Ingredient 1: memory unsafety

Some logical limitations on memory usage are
generally not automatically checked in C/C++.

Motivated by speed, simplicity, history

Accessing arrays does not check against the size

Program must free memory when no longer
needed, then not use

I.e., no garbage collection

Ingredient 2: missing input checks

Constraints on the untrusted input needed for safety
are not checked
Many normal uses of the program will still work fine

E.g., input size not too large

Attacks occur on inputs that are rare or only an
attacker would think of

Usually would have been OK to reject these

Recipe for safe code

Safe code needs to ensure that for any value of the
untrusted input, nothing unsafe will happen

From pure security perspective, stopping with an
error message is generally safe

Like other kinds of bugs, easier said than done

Safe interfaces or better checks

General strategy: use features and libraries with an
inherently safer design

E.g., C++ string class with automatic memory
management

General strategy: add more checks for unsafe or
just unexpected conditions

Allow fewer inputs ! fewer attack opportunities

Auditing and testing

Reading code looking for security problems is called
a code audit

Often more effective if the reader has fresh eyes

Many security bugs can be found via testing
Especially randomized automatic testing called fuzzing



After something goes wrong

At language level, no guarantees about behavior of
memory-unsafe code

C undefined behavior means literally anything can happen

On real implementations, most unsafe effects
understandable from low-level perspective

This is where what you learned in 2021 is relevant

How an attack succeeds in doing something
interesting is more complex

Mitigation: an arms race

Modern systems also make many changes to the
compiler and runtime to try to make attacker’s life
harder

ASLR, DEP, stack canaries, . . . more details later

But for performance and compatibility, usually not
complete protections

Attackers also have fancier techniques to avoid them

Outline

Memory safety and security

Stack buffer overflow

Reversing the stack

Other safety problems

Source-level view (1)

void func(void) {

char buffer[50];

write_200_bytes_into(buffer);

}

Source-level view (2)

void func(char *attacker_controlled) {

char buffer[50];

strcpy(buffer, attacker_controlled);

}

Demo break 1

Simple palindrome checker:
Short input ! correct behavior
Normal too-long input ! crash
Malicious too-long input ! exploit

Recall: the stack

In compiled C code, local variables and other
metadata like return addresses are stored in a
memory region called the stack

Structured as a stack with one frame of data per
executing function

Starts at a numerically large address and grows to
smaller addresses

Overall layout (Linux 32-bit)



Detail: initial stack Stack frame layout

Stack frame overflow Demo break 2

How did the attacker know how to overwrite the
return address?

Outline

Memory safety and security

Stack buffer overflow

Reversing the stack

Other safety problems

A possible solution

Part of what makes this classic attack easy is that
the array grows in the direction toward the function’s
return address

If we made the stack grow towards higher addresses
instead, this wouldn’t work in the same way

Classic puzzler: why isn’t this a solution to the
problem?

A concrete example

void func(char *attacker_controlled) {

char buffer[50];

strcpy(buffer, attacker_controlled);

}

What might happen in this example, for instance?

Outline

Memory safety and security

Stack buffer overflow

Reversing the stack

Other safety problems



Non-contiguous overflow

An overflow doesn’t have to write to the buffer in
sequence

For instance, the code might compute a single index,
and store to it

Heap buffer overflow

Overwriting a malloced buffer isn’t close to a return
address
But other targets are available:

Metadata used to manage the heap, contents of other
objects

Use after free

A common bug is to free an object via one pointer
and keep using it via another

Leads to unsafe behavior after the memory is
reused for another object

Integer overflow

Integer types have limited size, and will wrap around
if a computation is too large
Not unsafe itself, but often triggers later bugs

E.g., not allocating enough space

Function pointers, etc.

Other data used for control flow could be targeted
for overwriting by an attacker

Common C case: function pointers

More obscure C case: setjmp/longjmp buffers

Virtual dispatch

When C++ objects have virtual methods, which
implementation is called depends on the runtime
type

Under the hood, this is implemented with a table of
function pointers called a vtable

An appealing target in attacking C++ code

Non-control data overwrite

An attacker can also trigger undesired-to-you
behavior by modifying other data

For instance, flags that control other security checks

Format string injection

The first argument of printf is a little language
controlling output formatting

Best practice is for the format string to be a
constant

An attacker who controls a format string can trigger
other mischief


