
CSci 4271W
Development of Secure Software Systems

Day 9: More Unix Access Control
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Exercise: using Unix permissions

Injection vulnerabilities: format strings

Logistics announcements

Good technical writing (pt. 1)

More Unix permissions

Setting: files related to this class

Student and course staff materials

Imagine everything is in Unix files on CSE Labs
Versus reality of a mixture of Unix with web-based
systems like Canvas

Users and groups

Users: smccaman (instructor), paul1155 (TA),
stude003 (student)

Groups: csci4271staff (instructor and TA), csci4271all
(staff and students)

What I want from you

First, think of a kind of file/directory/information that
would be relevant to the class

Then, decide on the appropriate octal permissions
bits, plus owner and group, that would be appropriate

Then repeat with a new resource, looking for one
with different permissions bits

Outline

Exercise: using Unix permissions

Injection vulnerabilities: format strings

Logistics announcements

Good technical writing (pt. 1)

More Unix permissions

Injection vulnerabilities

Common dangerous pattern: interpreter code with
attacker control

Interpreted language example: eval

OS example: shell script injection

Web examples: JavaScript (XSS), SQL injection

C library example: printf format string

printf reminder

printf (and related functions like fprintf are a
convenient way to produce formatted output
The format string argument contains format
specifiers (starting with %) controlling how the other
arguments are interpreted

printf("Function %s is at address %016x\n",

name, addr);



Variable arguments functions

C has special features for functions like printf that
take a varying number of arguments

Macros va_start, va_arg, etc.

Compiler can’t check type or number of arguments

Args will be stored on stack, for pointer access

Format string attack

In secure code, format strings should not be under
external control

Common case: just constant strings

What malicious things can an attacker do via a
format string?
Step one: add extra integer specifiers, dump stack

Already useful for information disclosure

Format string attack layout Format string attack layout

Format string attack: overwrite

%n specifier: store number of chars written so far to
pointer arg

Benign but uncommon use: account for length in other
formatting

Advance format arg pointer to other
attacker-controlled data

Control number of chars written with padding

Net result is a “write-what-where” primitive

Practical format string challenges

Attacker usually must control format as well as one
or more arguments
Writing a big value requires impractical output size

Workaround 1: overwrite two bytes with %hn

Workaround 2: use overlapping unaligned write to control
byte by byte

Format string defenses

Compilers will warn for printf that looks like it
should just be puts

Several platforms have decided to just remove %n

Android Bionic, Visual Studio

Linux glibc by default will block %n if the format
string is writeable

Major remaining use is information disclosure

Outline

Exercise: using Unix permissions

Injection vulnerabilities: format strings

Logistics announcements

Good technical writing (pt. 1)

More Unix permissions



Complete project 1 instructions posted

Provides more detail beyond previous in-class
announcements

Available from Assignments page of public site

Most important reminder: initial report due Friday by
11:59pm

Supplemental office hours

I will host another office hour after class (5:15-6:15)
today

May continue based on demand

Please also take advantage of Piazza, we’ll be active
there too

Outline

Exercise: using Unix permissions

Injection vulnerabilities: format strings

Logistics announcements

Good technical writing (pt. 1)

More Unix permissions

Writing in CS versus other writing

Key goal is accurately conveying precise technical
information

More important: careful use of terminology,
structured organization

Less important: writer’s personality, appeals to
emotion

Still important: concise expression

Don’t use long words or complicated expressions
when simpler ones would convey the same meaning

Beneficial for both clarity and style

Know your audience

When technical terminology makes your point clearly,
use it
But provide definitions if a concept might be new to
many readers

Be careful to provide the right information in the definition
Define at the first instead of a later use

On other hand, avoid introducing too many new
terms

Reuse the same term when referring to the same
concept

Precise explanations

Don’t say “we” do something when it’s the computer
that does it

And avoid passive constructions

Don’t anthropomorphize (computers don’t “know”)

Use singular by default so plural provides a
distinction:

- The students take tests
+ Each student takes a test
+ Each student takes multiple tests

Provide structure

Use plenty of sections and sub-sections

It’s OK to have some redundancy in previewing
structure
Limit each paragraph to one concept, and not too
long

Start with a clear topic sentence



Outline

Exercise: using Unix permissions

Injection vulnerabilities: format strings

Logistics announcements

Good technical writing (pt. 1)

More Unix permissions

Process UIDs and setuid(2)

UID is inherited by child processes, and an
unprivileged process can’t change it

But there are syscalls root can use to change the
UID, starting with setuid

E.g., login program, SSH server

Setuid programs, different UIDs

If 04000 “setuid” bit set, newly exec’d process will
take UID of its file owner

Other side conditions, like process not traced

Specifically the effective UID is changed, while the
real UID is unchanged

Shows who called you, allows switching back

More different UIDs

Two mechanisms for temporary switching:
Swap real UID and effective UID (BSD)
Remember saved UID, allow switching to it (System V)

Modern systems support both mechanisms at the
same time

Setgid, games

Setgid bit 02000 mostly analogous to setuid

But note no supergroup, so UID 0 is still special

Classic application: setgid games for managing
high-score files

Special case: /tmp

We’d like to allow anyone to make files in /tmp

So, everyone should have write permission

But don’t want Alice deleting Bob’s files

Solution: “sticky bit” 01000

Special case: group inheritance

When using group to manage permissions, want a
whole tree to have a single group
When 02000 bit set, newly created entries with
have the parent’s group

(Historic BSD behavior)

Also, directories will themselves inherit 02000

Other permission rules

Only file owner or root can change permissions

Only root can change file owner
Former System V behavior: “give away chown”

Setuid/gid bits cleared on chown

Set owner first, then enable setuid


