CSci 427\W
Development of Secure Software Systems
Day 9: More Unix Access Control

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Exercise: using Unix permissions

Setting: files related to this class

©) Student and course staff materials

©) Imagine everything is in Unix files on CSE Labs

® Versus reality of a mixture of Unix with web-based
systems like Canvas

Users and groups

£) Users: smccaman (instructor), paulli55 (TA),
stude003 (student)

£) Groups: cscid271staff (instructor and TA), cscid271all
(staff and students)

What | want from you

£) First, think of a kind of file/directory/information that
would be relevant to the class

£) Then, decide on the appropriate octal permissions
bits, plus owner and group, that would be appropriate

©) Then repeat with a new resource, looking for one
with different permissions bits

Outline

Injection vulnerabilities: format strings

Injection vulnerabilities

£) Common dangerous pattern: interpreter code with
attacker control

©) Interpreted language example: eval

£) OS example: shell script injection

£) Web examples: JavaScript (XSS), SQL injection
©) C library example: printf format string

printf reminder

© printf (and related functions like fprintf are a
convenient way to produce formatted output

©) The format string argument contains format
specifiers (starting with %) controlling how the other
arguments are interpreted

printf ("Function %s is at address 7%016x\n",
name, addr);




Variable arguments functions

©) C has special features for functions like printf that
take a varying number of arguments
® Macros va_start, va_arg, etc.

£) Compiler can't check type or number of arguments
©) Args will be stored on stack, for pointer access

Format string attack

£ In secure code, format strings should not be under
external control
® Common case: just constant strings
£) What malicious things can an attacker do via a
format string?
£) Step one: add extra integer specifiers, dump stack
® Already useful for information disclosure

Format string attack layout

caller locals,
other frames

spec.
arg #2

spec.

arg #1 argument
— 7

pointer

HiE]l

format
string

ptr \ /
return

L %X %X %X %X %X
address|

caller frame

printf frame

Format string attack layout

caller locals,
other frames

spec.
arg #2

spec.
arg #1 argument

format pointer
string.

HIE]N

ptr

MG %X %X %X %X %X
laddress
caller frame

printf frame

Format string attack: overwrite

©) %n specifier: store number of chars written so far to

pointer arg
® Benign but uncommon use: account for length in other
formatting

©) Advance format arg pointer to other
attacker-controlled data

£) Control number of chars written with padding
©) Net result is a "write-what-where” primitive

Practical format string challenges

£) Attacker usually must control format as well as one
or more arguments
£) Writing a big value requires impractical output size

® Workaround 1. overwrite two bytes with %hn
® Workaround 2: use overlapping unaligned write to control
byte by byte

Format string defenses

£) Compilers will warn for printf that looks like it
should just be puts
©) Several platforms have decided to just remove %n
® Android Bionic, Visual Studio
o) Linux glibc by default will block %n if the format
string is writeable
£) Major remaining use is information disclosure

Outline

Logistics announcements




Complete project 1 instructions posted

) Provides more detail beyond previous in-class
announcements
® Available from Assignments page of public site
£) Most important reminder: initial report due Friday by
1:59pm

Supplemental office hours

o) | will host another office hour after class (5:15-6:15)
today

©) May continue based on demand

£) Please also take advantage of Piazza, we'll be active
there too

Outline

Good technical writing (pt. 1)

Writing in CS versus other writing

£) Key goal is accurately conveying precise technical
information

£) More important: careful use of terminology,
structured organization

£) Less important: writer's personality, appeals to
emotion

Still important: concise expression

©) Don't use long words or complicated expressions
when simpler ones would convey the same meaning
©) Beneficial for both clarity and style

Know your audience

£) When technical terminology makes your point clearly,
use it
£) But provide definitions if a concept might be new to
many readers
® Be careful to provide the right information in the definition
® Define at the first instead of a later use
£) On other hand, avoid introducing too many new
terms
® Reuse the same term when referring to the same
concept

Precise explanations

©) Don't say “we” do something when it's the computer
that does it
® And avoid passive constructions
©) Don't anthropomorphize (computers don't “know")

©) Use singular by default so plural provides a
distinction:
- The students take tests
+ Each student takes a test
+ Each student takes multiple tests

Provide structure

£) Use plenty of sections and sub-sections

£ It's OK to have some redundancy in previewing
structure
o) Limit each paragraph to one concept, and not too
long
® Start with a clear topic sentence




Outline

More Unix permissions

Process UIDs and setuid(2)

©) UID is inherited by child processes, and an
unprivileged process can't change it

£) But there are syscalls root can use to change the
UID, starting with setuid

©) Eg, login program, SSH server

Setuid programs, different UIDs

£ If 04000 “setuid” bit set, newly execd process will
take UID of its file owner
® Other side conditions, like process not traced
©) Specifically the effective UID is changed, while the
real UID is unchanged
® Shows who called you, allows switching back

More different UIDs

£) Two mechanisms for temporary switching:
® Swap real UID and effective UID (BSD)
® Remember saved UID, allow switching to it (System V)
£) Modern systems support both mechanisms at the
same time

Setgid, games

©) Setgid bit 02000 mostly analogous to setuid
) But note no supergroup, so UID O is still special

©) Classic application: setgid games for managing
high-score files

Special case: /tmp

£) Wed like to allow anyone to make files in /tmp
£) So, everyone should have write permission

£) But don't want Alice deleting Bob's files

£) Solution: “sticky bit” 01000

Special case: group inheritance

©) When using group to manage permissions, want a
whole tree to have a single group
£) When 02000 bit set, newly created entries with
have the parent's group
® (Historic BSD behavior)

) Also, directories will themselves inherit 02000

Other permission rules

£) Only file owner or root can change permissions
£) Only root can change file owner

® Former System V behavior: “give away chown”
£) Setuid/qid bits cleared on chown

® Set owner first, then enable setuid




