CSci 427\W
Development of Secure Software Systems
Day 10: More OS-level Threats

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Good technical writing (pt. 1)

Writing in CS versus other writing

©) Key goal is accurately conveying precise technical
information

£) More important: careful use of terminology,
structured organization

©) Less important: writer's personality, persuasion,
appeals to emotion

Still important: concise expression

£) Don't use long words or complicated expressions
when simpler ones would convey the same meaning.
Examples:
® necessitate
® utilize
® due to the fact that

£) Beneficial for both clarity and style

Know your audience: terminology

©) When technical terminology makes your point clearly,
use it
©) But provide definitions if a concept might be new to
many readers
® Be careful to provide the right information in the definition
® Define at the first instead of a later use
©) On other hand, avoid introducing too many new

terms
® Keep the same term when referring to the same concept

Precise explanations

£) Don't say "we” do something when it's the computer
that does it
® And avoid passive constructions
£) Don't anthropomorphize (computers don't “know")

£) Use singular by default so plural provides a
distinction:
- The students take tests
+ Each student takes a test
+ Each student takes multiple tests

Provide structure

©) Use plenty of sections and sub-sections
o) It's OK to have some redundancy in previewing
structure
©) Limit each paragraph to one concept, and not too
long
® Start with a clear topic sentence

o) Split long, complex sentences into separate ones

Know your audience: Project 1

£ For projects in this course, assume your audience is
another student who already understands general
course concepts
® Up to the current point in the course
® |le, don't need to define “buffer overflow” from scratch
©) But you need to explain specifics of bcimgview

® Make clear what part of the program you're referring to
® Explain all the specific details of a vulnerability

Inclusive language

©) Avoid words and grammar that implies relevant
people are male
©) My opinion: avoid using he/him pronouns for
unknown people
£) Some possible alternatives
® “he/she”
® Alternating genders

® Rewrite to plural and use “they” (may be less clear)
® Singular “they” (least traditional, but spreading)

Outline

Logistics announcements

Another supplemental office hour

©) My last office hour before the project 1 submission
will be 1-2pm on Friday

£) Please also keep using Piazza

Feedback on Saugata’s TA performance

£) Anonymous survey on how Saugata is doing as a TA

©) Your feedback helps his development and the rest of
the semester

O https://forms.gle/ANiy6hR1mdJmfULp8

Outline

Program privileges with setuid

Process UIDs and setuid(2)

£) UD is inherited by child processes, and an
unprivileged process can't change it

£) But there are syscalls root can use to change the
UID, starting with setuid

£ Eg, login program, SSH server

Setuid programs, different UIDs

©) If 04000 “setuid” bit set, newly execd process will
take UID of its file owner
® Other side conditions, like process not traced
o) Specifically the effective UID is changed, while the

real UD is unchanged
® Shows who called you, allows switching back

What is setuid good for?

£) Setuid allows a user’s privilege to be granted to a
program

©) Using a setuid program, users can do things they
couldn't do directly

£) The program is responsible for using the privilege
correctly

Setuid and security risk

£) Bugs in a setuid program are more likely to be
security vulnerabilities

©) Subverting a setuid program provides undeserved
privilege

©) Authors of setuid programs need to be very careful
about secure programming

Outline

Shell code injection and related threats

Two kinds of privilege escalation

©) Local exploit: give higher privilege to a reqular user
® Eg, caused by bug in setuid program or OS kernel
©) Remote exploit: give access to an external user
who doesn't even have an account
® Eg, caused by bug in network-facing server or client

Shell code injection

©) The command shell is convenient to use, especially
in scripts
8 In C: system, popen
©) But it is bad to expose the shell's power to an
attacker
©) Key pitfall: assembling shell commands as strings

£) Note: different from binary “shellcode”

Shell code injection example

©) Benign: system("cp $argl $arg2"), argl =
"filel.txt"

©) Attack: argl = "a b; echo Gotcha"

©) Command: "cp a b; echo Gotcha file2.txt"

£) Not a complete solution: prohibit *;"

The structure problem

©) What went wrong here?

£) Basic mistake: assuming string concatenation will
respect language grammar

® Eg, that attacker supplied “filename” will be interpreted
that way

Best fix: avoiding the shell

©) Avoid letting untrusted data get near a shell

) For instance, call external programs with lower-level
interfaces
® Eq, fork and exec instead of system

©) May constitute a security/flexibility trade-off

Less reliable: text processing

£) Allow-list: known-good characters are allowed,

others prohibited
® Eg, username consists only of letters
m Safest, but potential functionality cost

£) Deny-list: known-bad characters are prohibited,
others allowed
® Easy to miss some bad scenarios
£) "Sanitization”: transform bad characters into good
® Same problem as deny-list, plus extra complexity

Terminology note

) Historically the most common terms for allow-list
and deny-list have been “whitelist” and “blacklist”
respectively

©) These terms have been criticized for a problematic
“white=good"”, “black=bad" association

©) The push to avoid the terms got significant additional
attention this summer, but is still somewhat
politicized

Different shells and multiple interpretation

£) Complex Unix systems include shells at multiple
levels, making these issues more complex

® Frequent example: scp runs a shell on the server, so
filenames with whitespace need double escaping

) Other shell-like programs also have caveats with
levels of interpretation
® Tcl before version 9 interpreted leading zeros as octal

Related local dangers

©) File names might contain any character except / or
the null character

©) The PATH environment variable is user-controllable,
so cp may not be the program you expect

©) Environment variables controlling the dynamic loader
cause other code to be loaded

IFS and why it was a problem

£ In Unix, splitting a command line into words is the

shell’'s job
® String — argv array
®grep a b cVs. grep ’a b’ ¢

£) Choice of separator characters (default space, tab,
newline) is configurable

£) Exploit system("/bin/uname")

£) In modern shells, improved by not taking from
environment

Outline

More Unix permissions

More different UIDs

£) Two mechanisms for temporary switching:

® Swap real UID and effective UID (BSD)
® Remember saved UID, allow switching to it (System V)

£) Modern systems support both mechanisms at the
same time

Setgid, games

©) Setgid bit 02000 mostly analogous to setuid
£) But note no supergroup, so UID O is still special

©) Classic application: setgid games for managing
high-score files

Special case: /tmp

£) Wed like to allow anyone to make files in /tmp
£) So, everyone should have write permission

£) But don't want Alice deleting Bob's files

£) Solution: “sticky bit” 01000

Special case: group inheritance

©) When using group to manage permissions, want a
whole tree to have a single group
£) When 02000 bit set, newly created entries with
have the parent's group
® (Historic BSD behavior)

) Also, directories will themselves inherit 02000

Other permission rules

£) Only file owner or root can change permissions
©) Only root can change file owner

® Former System V behavior: “give away chown”
£) Setuid/qid bits cleared on chown

® Set owner first, then enable setuid

