
CSci 4271W
Development of Secure Software Systems

Day 10: More OS-level Threats
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Good technical writing (pt. 1)

Logistics announcements

Program privileges with setuid

Shell code injection and related threats

More Unix permissions

Writing in CS versus other writing

Key goal is accurately conveying precise technical
information

More important: careful use of terminology,
structured organization

Less important: writer’s personality, persuasion,
appeals to emotion

Still important: concise expression

Don’t use long words or complicated expressions
when simpler ones would convey the same meaning.
Examples:

necessitate
utilize
due to the fact that

Beneficial for both clarity and style

Know your audience: terminology

When technical terminology makes your point clearly,
use it
But provide definitions if a concept might be new to
many readers

Be careful to provide the right information in the definition
Define at the first instead of a later use

On other hand, avoid introducing too many new
terms

Keep the same term when referring to the same concept

Precise explanations

Don’t say “we” do something when it’s the computer
that does it

And avoid passive constructions

Don’t anthropomorphize (computers don’t “know”)

Use singular by default so plural provides a
distinction:

- The students take tests
+ Each student takes a test
+ Each student takes multiple tests

Provide structure

Use plenty of sections and sub-sections

It’s OK to have some redundancy in previewing
structure
Limit each paragraph to one concept, and not too
long

Start with a clear topic sentence

Split long, complex sentences into separate ones

Know your audience: Project 1

For projects in this course, assume your audience is
another student who already understands general
course concepts

Up to the current point in the course
I.e., don’t need to define “buffer overflow” from scratch

But you need to explain specifics of bcimgview
Make clear what part of the program you’re referring to
Explain all the specific details of a vulnerability

Inclusive language

Avoid words and grammar that implies relevant
people are male
My opinion: avoid using he/him pronouns for
unknown people
Some possible alternatives

“he/she”
Alternating genders
Rewrite to plural and use “they” (may be less clear)
Singular “they” (least traditional, but spreading)

Outline

Good technical writing (pt. 1)

Logistics announcements

Program privileges with setuid

Shell code injection and related threats

More Unix permissions

Another supplemental office hour

My last office hour before the project 1 submission
will be 1-2pm on Friday

Please also keep using Piazza

Feedback on Saugata’s TA performance

Anonymous survey on how Saugata is doing as a TA

Your feedback helps his development and the rest of
the semester

https://forms.gle/ANiy6hR1mdJmfULp8

Outline

Good technical writing (pt. 1)

Logistics announcements

Program privileges with setuid

Shell code injection and related threats

More Unix permissions

Process UIDs and setuid(2)

UID is inherited by child processes, and an
unprivileged process can’t change it

But there are syscalls root can use to change the
UID, starting with setuid

E.g., login program, SSH server

Setuid programs, different UIDs

If 04000 “setuid” bit set, newly exec’d process will
take UID of its file owner

Other side conditions, like process not traced

Specifically the effective UID is changed, while the
real UID is unchanged

Shows who called you, allows switching back

What is setuid good for?

Setuid allows a user’s privilege to be granted to a
program

Using a setuid program, users can do things they
couldn’t do directly

The program is responsible for using the privilege
correctly

Setuid and security risk

Bugs in a setuid program are more likely to be
security vulnerabilities

Subverting a setuid program provides undeserved
privilege

Authors of setuid programs need to be very careful
about secure programming

Outline

Good technical writing (pt. 1)

Logistics announcements

Program privileges with setuid

Shell code injection and related threats

More Unix permissions

Two kinds of privilege escalation

Local exploit: give higher privilege to a regular user
E.g., caused by bug in setuid program or OS kernel

Remote exploit: give access to an external user
who doesn’t even have an account

E.g., caused by bug in network-facing server or client

Shell code injection

The command shell is convenient to use, especially
in scripts

In C: system, popen

But it is bad to expose the shell’s power to an
attacker

Key pitfall: assembling shell commands as strings

Note: different from binary “shellcode”

Shell code injection example

Benign: system("cp $arg1 $arg2"), arg1 =
"file1.txt"

Attack: arg1 = "a b; echo Gotcha"

Command: "cp a b; echo Gotcha file2.txt"

Not a complete solution: prohibit ‘;’

The structure problem

What went wrong here?

Basic mistake: assuming string concatenation will
respect language grammar

E.g., that attacker supplied “filename” will be interpreted
that way

Best fix: avoiding the shell

Avoid letting untrusted data get near a shell

For instance, call external programs with lower-level
interfaces

E.g., fork and exec instead of system

May constitute a security/flexibility trade-off

Less reliable: text processing

Allow-list: known-good characters are allowed,
others prohibited

E.g., username consists only of letters
Safest, but potential functionality cost

Deny-list: known-bad characters are prohibited,
others allowed

Easy to miss some bad scenarios

“Sanitization”: transform bad characters into good
Same problem as deny-list, plus extra complexity

Terminology note

Historically the most common terms for allow-list
and deny-list have been “whitelist” and “blacklist”
respectively
These terms have been criticized for a problematic
“white=good”, “black=bad” association
The push to avoid the terms got significant additional
attention this summer, but is still somewhat
politicized

Different shells and multiple interpretation

Complex Unix systems include shells at multiple
levels, making these issues more complex

Frequent example: scp runs a shell on the server, so
filenames with whitespace need double escaping

Other shell-like programs also have caveats with
levels of interpretation

Tcl before version 9 interpreted leading zeros as octal

Related local dangers

File names might contain any character except / or
the null character

The PATH environment variable is user-controllable,
so cp may not be the program you expect

Environment variables controlling the dynamic loader
cause other code to be loaded

IFS and why it was a problem

In Unix, splitting a command line into words is the
shell’s job

String ! argv array
grep a b c vs. grep 'a b' c

Choice of separator characters (default space, tab,
newline) is configurable
Exploit system("/bin/uname")
In modern shells, improved by not taking from
environment

Outline

Good technical writing (pt. 1)

Logistics announcements

Program privileges with setuid

Shell code injection and related threats

More Unix permissions

More different UIDs

Two mechanisms for temporary switching:
Swap real UID and effective UID (BSD)
Remember saved UID, allow switching to it (System V)

Modern systems support both mechanisms at the
same time

Setgid, games

Setgid bit 02000 mostly analogous to setuid

But note no supergroup, so UID 0 is still special

Classic application: setgid games for managing
high-score files

Special case: /tmp

We’d like to allow anyone to make files in /tmp

So, everyone should have write permission

But don’t want Alice deleting Bob’s files

Solution: “sticky bit” 01000

Special case: group inheritance

When using group to manage permissions, want a
whole tree to have a single group
When 02000 bit set, newly created entries with
have the parent’s group

(Historic BSD behavior)

Also, directories will themselves inherit 02000

Other permission rules

Only file owner or root can change permissions

Only root can change file owner
Former System V behavior: “give away chown”

Setuid/gid bits cleared on chown

Set owner first, then enable setuid

