
CSci 4271W
Development of Secure Software Systems

Day 12: OS auditing and isolation
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Exercise: auditing for OS-related bugs

OS: protection and isolation

More choices for isolation

Next: the web from a security perspective

Understanding the OS context

Which code is running with privileges?

Which parts of the environment are untrusted?

Which directories are trusted or untrusted?

Common problems to look for

Attacker-controlled shell commands

Effects of attacker-controlled environment

TOCTTOU vulnerabilities in filesystem checks

Races in filesystem modifications

OS context for BCLPR

Printer management on system with untrusted users

BCLPR binary is setuid root

Printer-related directories under /var/bclpr are
trusted

Normal usage: print a user’s own text or PDF file

Generic UNIX local threat model

Ultimate attacker goal of privilege escalation to root

Direct: inject shellcode into setuid program

Examples of indirect attacks:
Write privileged config file (e.g., /etc/passwd, root
crontab)
Read secret config file (e.g., root SSH private key)
Set an attacker binary to be setuid root

(Trick human sysadmin into doing something)

Your task for BCLPR

Find places in the code that indicate OS-related
vulnerabilities

Prioritize by which are most likely/easiest to exploit

Make list of line numbers and bug types to share via
chat

Outline

Exercise: auditing for OS-related bugs

OS: protection and isolation

More choices for isolation

Next: the web from a security perspective



OS security topics

Resource protection

Process isolation

User authentication (will cover later)

Access control (already covered)

Protection and isolation

Resource protection: prevent processes from
accessing hardware

Process isolation: prevent processes from interfering
with each other

Design: by default processes can do neither

Must request access from operating system

Reference monitor

Complete mediation: all accesses are checked

Tamperproof: the monitor is itself protected from
modification

Small enough to be thoroughly verified

Hardware basis: memory protection

Historic: segments

Modern: paging and page protection
Memory divided into pages (e.g. 4k)
Every process has own virtual to physical page table
Pages also have R/W/X permissions

Linux 32-bit example Hardware basis: supervisor bit

Supervisor (kernel) mode: all instructions available

User mode: no hardware or VM control instructions

Only way to switch to kernel mode is specified entry
point

Also generalizes to multiple “rings”

Outline

Exercise: auditing for OS-related bugs

OS: protection and isolation

More choices for isolation

Next: the web from a security perspective

Ideal: least privilege

Programs and users should have the most limited
set of powers needed to do their job
Presupposes that privileges are suitably divisible

Contrast: Unix root



“Trusted”, TCB

In security, “trusted” is a bad word

X is trusted: X can break your security

“Untrusted” = okay if it’s evil

Trusted Computing Base (TCB): minimize

Restricted languages

Main application: code provided by untrusted parties

Packet filters in the kernel

JavaScript in web browsers
Also Java, Flash ActionScript, etc.

SFI

Software-based Fault Isolation

Instruction-level rewriting
Analogous to but predates control-flow integrity

Limit memory stores and sometimes loads

Can’t jump out except to designated points

E.g., Google Native Client

Separate processes

OS (and hardware) isolate one process from another

Pay overhead for creation and communication

System call interface allows many possibilities for
mischief

System-call interposition

Trusted process examines syscalls made by
untrusted

Implement via ptrace (like strace, gdb) or via kernel
change

Easy policy: deny

Interposition challenges

Argument values can change in memory (TOCTTOU)

OS objects can change (TOCTTOU)

How to get canonical object identifiers?

Interposer must accurately model kernel behavior

Details: Garfinkel (NDSS’03)

Separate users

Reuse OS facilities for access control

Unit of trust: program or application

Older example: qmail

Newer example: Android

Limitation: lots of things available to any user

chroot

Unix system call to change root directory

Restrict/virtualize file system access

Only available to root

Does not isolate other namespaces



OS-enabled containers

One kernel, but virtualizes all namespaces

FreeBSD jails, Linux LXC, Solaris zones, etc.

Quite robust, but the full, fixed, kernel is in the TCB

(System) virtual machines

Presents hardware-like interface to an untrusted
kernel

Strong isolation, full administrative complexity

I/O interface looks like a network, etc.

Virtual machine designs

(Type 1) hypervisor: ‘superkernel’ underneath VMs

Hosted: regular OS underneath VMs

Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

Hardware based: fastest, now common

Partial translation: e.g., original VMware

Full emulation: e.g. QEMU proper
Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

Separates “browser kernel” from less-trusted
“rendering engine”

Pragmatic, keeps high-risk components together

Experimented with various Windows and Linux
sandboxing techniques

Blocked 70% of historic vulnerabilities, not all new
ones

http://seclab.stanford.edu/websec/chromium/

Outline

Exercise: auditing for OS-related bugs

OS: protection and isolation

More choices for isolation

Next: the web from a security perspective

Once upon a time: the static web

HTTP: stateless file download protocol
TCP, usually using port 80

HTML: markup language for text with formatting and
links

All pages public, so no need for authentication or
encryption

Web applications

The modern web depends heavily on active software

Static pages have ads, paywalls, or “Edit” buttons

Many web sites are primarily forms or storefronts

Web hosted versions of desktop apps like word
processing



Server programs

Could be anything that outputs HTML

In practice, heavy use of databases and frameworks

Wide variety of commercial, open-source, and
custom-written
Flexible scripting languages for ease of development

PHP, Ruby, Perl, etc.

Client-side programming

Java: nice language, mostly moved to other uses

ActiveX: Windows-only binaries, no sandboxing
Glad to see it on the way out

Flash and Silverlight: most important use is DRM-ed
video

Core language: JavaScript

JavaScript and the DOM

JavaScript (JS) is a dynamically-typed prototype-OO
language

No real similarity with Java

Document Object Model (DOM): lets JS interact with
pages and the browser

Extensive security checks for untrusted-code model

Same-origin policy

Origin is a tuple (scheme, host, port)
E.g., (http, www.umn.edu, 80)

Basic JS rule: interaction is allowed only with the
same origin

Different sites are (mostly) isolated applications

GET, POST, and cookies

GET request loads a URL, may have parameters
delimited with ?, &, =

Standard: should not have side-effects

POST request originally for forms
Can be larger, more hidden, have side-effects

Cookie: small token chosen by server, sent back on
subsequent requests to same domain

User and attack models

“Web attacker” owns their own site
(www.attacker.com)

And users sometimes visit it
Realistic reasons: ads, SEO

“Network attacker” can view and sniff unencrypted
data

Unprotected coffee shop WiFi


