CSci 427\W
Development of Secure Software Systems
Day 17: Cryptography: public key

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Preview question

Which of the following would have to be completely abandoned if
scalable quantum computers become widely available?

A. one-time pads
B. RSA

C. AES

D. ROT-13

E. SHA-3

Outline

Building a secure channel

Session keys

©) Don't use your long term password, etc., directly as
a key

£ Instead, session key used for just one channel

£ In modern practice, usually obtained with public-key
crypto

£) Separate keys for encryption and MACing

Order of operations

©) Encrypt and MAC ("in parallel”)

® Safe only under extra assumptions on the MAC
©) Encrypt then MAC

® Has cleanest formal safety proof
£) MAC then Encrypt

® Preferred by FS&K for some practical reasons
® Can also be secure

Authenticated encryption modes

£ Encrypting and MACing as separate steps is about
twice as expensive as just encrypting
£ “Authenticated encryption” modes do both at once
® Newer (circa 2000) innovation, many variants
£) NIST-standardized and unpatented: Galois Counter
Mode (GCM)

Ordering and message numbers

©) Also don't want attacker to be able to replay or
reorder messages

©) Simple approach: prefix each message with counter
) Discard duplicate/out-of-order messages

Padding

£) Adjust message size to match multiple of block size
£) To be reversible, must sometimes make message
longer
£ Eq. for 16-byte block, append either 1, or 2 2, or
3 3 3, up to 16 "16” bytes




Padding oracle attack

£) Have to be careful that decoding of padding does
not leak information

©) Eg, spend same amount of time MACing and
checking padding whether or not padding is right

©) Remote timing attack against CBC TLS published
2013

Don't actually reinvent the wheel

£) This is all implemented carefully in OpenSSL, SSH,
etc.

£) Good to understand it, but rarely sensible to
reimplement it

£ You'll probably miss at least one of decades’ worth
of attacks

Crypto primitive question

Which of these is a cryptographic primitive based on a
Feistel cipher design?

A. DES
B. AES
C. DSA
D CBC
E. HMAC

Outline

Public-key crypto basics

Pre-history of public-key crypto

©) First invented in secret at GCHQ

©) Proposed by Ralph Merkle for UC Berkeley grad.
security class project
® First attempt only barely practical
® Professor didn't like it
£) Merkle then found more sympathetic Stanford
collaborators named Diffie and Hellman

Box and locks analogy

£) Alice wants to send Bob a gift in a locked box

® They don't share a key

® Can't send key separately, don't trust UPS

® Box locked by Alice can't be opened by Bob, or
vice-versa

Box and locks analogy

) Alice wants to send Bob a qift in a locked box
® They don't share a key
® Can't send key separately, don't trust UPS

® Box locked by Alice can't be opened by Bob, or
vice-versa

£) Math perspective: physical locks commute

Protocol with clip art

Alice Bob

Alice Bob




Protocol with clip art

Alice Bob

—n_

Alice Bob

Protocol with clip art

Alice Bob

M

Alice Bob

Protocol with clip art

Alice Bob

—

Alice Bob

Public key primitives

£) Public-key encryption (generalizes block cipher)
® Separate encryption key EK (public) and decryption key
DK (secret)
£) Signature scheme (generalizes MAC)
® Separate signing key SK (secret) and verification key VK
(public)

Modular arithmetic

©) Fix modulus ., keep only remainders mod n
® mod 12: clock face; mod 23% unsigned int
) +, —, and x work mostly the same
) Division? Multiplicative inverse by extended GCD
£) Exponentiation: efficient by square and multiply

Generators and discrete log

£) Modulo a prime p, non-zero values and x have a
nice ("group”) structure

o g is a generator if ¢°, g, g%, g°, ... cover all
elements

£) Easy to compute x — g*
) Inverse, discrete logarithm, hard for large p

Diffie-Hellman key exchange

£) Goal: anonymous key exchange

©) Public parameters p, g; Alice and Bob have resp.

secrets a, b
©) Alice—Bob: A =g* (mod p)
£ Bob—Alice: B = g® (mod p)
©) Alice computes B¢ = g*® =k
©) Bob computes A = g%® =k

Relationship to a hard problem

£) We're not sure discrete log is hard (likely not even
NP-complete), but it's been unsolved for a long time

€ If discrete log is easy (eg, in P), DH is insecure
£) Converse might not be true: DH might have other
problems




Categorizing assumptions

£) Math assumptions unavoidable, but can categorize

I W

o) E.g,, build more complex scheme, shows it's “as
secure” as DH because it has the same underlying
assumption

£) Commonly “decisional” (DDH) and “computational”
(CDH) variants

Key size, elliptic curves

£) Need key sizes ~10 times larger then security level
® Attacks shown up to about 768 bits
£) Elliptic curves: objects from higher math with
analogous group structure
® (Only tenuously connected to ellipses)
) Elliptic curve algorithms have smaller keys, about 2x
security level

Another question

Which of these lists of people gave their initials to a
popular cryptographic primitive?

A. Preneel, Koblitz, and Imai

B. Diffie, Elgamal, and Schneier

C. Rivest, Shamir, and Adleman

D. Merkle, Damgard, and 5 other guys

E. Simmons, Hellman, and Anderson

Outline

Public key encryption and signatures

General description

) Public-key encryption (generalizes block cipher)
® Separate encryption key EK (public) and decryption key
DK (secret)
©) Signature scheme (generalizes MAC)
® Separate signing key SK (secret) and verification key VK
(public)

RSA setup

£) Choose n = pq, product of two large primes, as
modulus

©) n is public, but p and q are secret

£) Compute encryption and decryption exponents e
and d such that

M =M (mod n)

RSA encryption

©) Public key is (n,e)

o) Encryption of M is C = M¢ (mod n)

©) Private key is (n,d)

) Decryption of Cis C{ =M =M (mod n)

RSA signature

£) Signing key is (n, d)

©) Signature of M is S =M% (mod n)

£) Verification key is (n, e)

©) Check signature by S¢ =M% =M (mod n)

£) Note: symmetry is a nice feature of RSA, not shared
by other systems




RSA and factoring

£) We're not sure factoring is hard (likely not even
NP-complete), but it's been unsolved for a long time

o) If factoring is easy (e.g, in P), RSA is insecure
©) Converse might not be true: RSA might have other

problems

Homomorphism

£) Multiply RSA ciphertexts = multiply plaintexts
£) This homomorphism is useful for some interesting

applications
£) Even more powerful: fully homomaorphic encryption

(eg, both + and x)
® First demonstrated in 2009; still very inefficient

Problems with vanilla RSA

©) Homomorphism leads to chosen-ciphertext attacks

o) If message and e are both small compared to n, can
compute M'/¢ over the integers

£) Many more complex attacks too

Hybrid encryption

£) Public-key operations are slow
£ In practice, use them just to set up symmetric

session keys
-+ Only pay RSA costs at setup time

— Breaks at either level are fatal

Padding, try #1

©) Need to expand message (e.g., AES key) size to
match modulus

£) PKCS#1 v. 1.5 scheme: prepend 00 O1 FF FF .. FF

©) Surprising discovery (Bleichenbacher'98): allows

adaptive chosen ciphertext attacks on SSL
® Variants recurred later (cf. "ROBOT” 2018)

Modern “padding”

£) Much more complicated encoding schemes using
hashing, random salts, Feistel-like structures, etc.

£ Common examples: OAEP for encryption, PSS for
signing

£) Progress driven largely by improvement in random
oracle proofs

Simpler padding alternative

©) "Key encapsulation mechanism” (KEM)

©) For common case of public-key crypto used for
symmetric-key setup

® Also applies to DH

©) Choose RSA message r at random mod n,
symmetric key is H(r)

— Hard to retrofit, RSA-KEM insecure if e and r reused
with different n

Post-quantum cryptography

£) One thing quantum computers would be good for is

breaking crypto
£) Square root speedup of general search
® Countermeasure: double symmetric security level
£) Factoring and discrete log become poly-time
® DH, RSA, DSA, elliptic curves totally broken
® Totally new primitives needed (lattices, etc.)

£) Not a problem yet, but getting ready




Box and locks revisited

©) Alice and Bob's box scheme fails if an intermediary
can set up two sets of boxes
® Middleperson (man-in-the-middle) attack
£) Real world analogue: challenges of protocol design
and public key distribution




