### CSci 427IW Development of Secure Software Systems Day 20: 'S' protocols and crypto failures

Stephen McCamant University of Minnesota, Computer Science & Engineering

### Outline

SSH

SSL/TLS

More causes of crypto failure

DNSSEC

# Short history of SSH

- 5 Started out as freeware by Tatu Ylönen in 1995
- Original version commercialized
- Fully open-source OpenSSH from OpenBSD
- Protocol redesigned and standardized for "SSH 2"



# Newer crypto vulnerabilities

# IV chaining: IV based on last message ciphertext

- Allows chosen plaintext attacks
- Better proposal: separate, random IVs
- 🖲 Some tricky attacks still left
  - Send byte-by-byte, watch for errors
  - Of arguable exploitability due to abort
- Now migrating to CTR mode

# SSH over SSH

- SSH to machine 1, from there to machine 2 Common in these days of NATs
- Better: have machine 1 forward an encrypted connection
- 1. No need to trust 1 for secrecy
- 2. Timing attacks against password typing

# SSH (non-)PKI

When you connect to a host freshly, a mild note
When the host key has changed, a large warning

### Outline

### SSH

SSL/TLS

More causes of crypto failure

DNSSEC





# Compression oracle vuln.

- O Compr(S  $\parallel$  A), where S should be secret and A is attacker-controlled
- Attacker observes ciphertext length
- If A is similar to S, combination compresses better
- Compression exists separately in HTTP and TLS



- Kaloper-Meršinjak et al. have longer list "Lessons learned" are variable, though
- Meta-message: don't try this at home

# HTTPS hierarchical PKI Browser has order of 100 root certs Not same set in every browser Standards for selection not always clear Many of these in turn have sub-CAs Also, "wildcard" certs for individual domains Hierarchical trust? No. Any CA can sign a cert for any domain A couple of CA compromises recently Most major governments, and many companies you've never heard of, could probably make a google.com cert Still working on: make browser more picky, compare notes







### HTTPS and usability

- Many HTTPS security challenges tied with user decisions
- Is this really my bank?
- Seems to be a quite tricky problem
  - Security warnings often ignored, etc.
  - We'll return to this as a major example later



### Netscape RNG failure

- Early versions of Netscape SSL (1994-1995) seeded with:
  - Time of day
  - Process ID
  - Parent process ID
- Best case entropy only 64 bits
  - (Not out of step with using 40-bit encryption)
- But worse because many bits guessable

# Debian/OpenSSL RNG failure (1)

- OpenSSL has pretty good scheme using /dev/urandom
- Also mixed in some uninitialized variable values "Extra variation can't hurt"
- From modern perspective, this was the original sin Remember undefined behavior discussion?
- 🖲 But had no immediate ill effects





- Embedded devices, Linux /dev/urandom vs. /dev/random
- DSA signature algorithm also very vulnerable









Original sizes: 40-bit shared key (export restrictions) plus 24-bit IV = 64-bit RC4 key

Both too small

- 🖲 128-bit upgrade kept 24-bit IV
  - Vague about how to choose IVs
  - Least bad: sequential, collision takes hours
  - Worse: random or everyone starts at zero

# WEP RC4 related key attacks

- Only true crypto weakness
- RC4 "key schedule" vulnerable when:
  - RC4 keys very similar (e.g., same key, similar IV)
  - First stream bytes used
- Not such a problem for other RC4 users like SSL
  - Key from a hash, skip first output bytes



### Trustworthiness of primitives

- Classic worry: DES S-boxes
- Obviously in trouble if cipher chosen by your adversary
- In a public spec, most worrying are unexplained elements
- Best practice: choose constants from well-known math, like digits of  $\pi$







- Confidentiality
- Availability









# DANE: linking TLS to DNSSEC

"DNS-based Authentication of Named Entities"

- DNS contains hash of TLS cert, don't need CAs
- How is DNSSEC's tree of certs better than TLS's?

### Signing the root

- Political problem: many already distrust US-centered nature of DNS infrastructure
- Practical problem: must be very secure with no single point of failure
- Finally accomplished in 2010
  - Solution involves 'key ceremonies', international committees, smart cards, safe deposit boxes, etc.

# Deployment

- Standard deployment problem: all cost and no benefit to being first mover
- Servers working on it, mostly top-down
- Clients: still less than 20%
- Will probably be common for a while: insecure connection to secure resolver

### What about privacy?

- Users increasingly want privacy for their DNS queries as well
- Older DNSCurve and DNSCrypt protocols were not standardized
- More recent "DNS over TLS" and "DNS over HTTPS" are RFCs
- DNS over HTTPS in major browsers might have serious centralization effects